IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p3899-d532146.html
   My bibliography  Save this article

Expression Profile of Stemness Markers CD138, Nestin and Alpha-SMA in Ameloblastic Tumours

Author

Listed:
  • Callisthenis Yiannis

    (Melbourne Dental School, University of Melbourne, 720 Swanston Street, Carton, VIC 3053, Australia)

  • Massimo Mascolo

    (Pathology Unit, Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy)

  • Michele Davide Mignogna

    (Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, 80131 Naples, Italy)

  • Silvia Varricchio

    (Pathology Unit, Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy)

  • Valentina Natella

    (Pathology Unit, Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy)

  • Gaetano De Rosa

    (Pathology Unit, Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy)

  • Roberto Lo Giudice

    (Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy)

  • Cosimo Galletti

    (Comprehensive Dentistry Department, Faculty of Dentistry, Universitat de Barcelona, L’Hospitalet de Llobregat, 08007 Barcelona, Spain)

  • Rita Paolini

    (Melbourne Dental School, University of Melbourne, 720 Swanston Street, Carton, VIC 3053, Australia)

  • Antonio Celentano

    (Melbourne Dental School, University of Melbourne, 720 Swanston Street, Carton, VIC 3053, Australia)

Abstract

Ameloblastic carcinoma is a rare malignant odontogenic neoplasm with a poor prognosis. It can arise de novo or from a pre-existing ameloblastoma. Research into stemness marker expression in ameloblastic tumours is lacking. This study aimed to explore the immunohistochemical expression of stemness markers nestin, CD138, and alpha-smooth muscle actin (alpha-SMA) for the characterisation of ameloblastic tumours. Six cases of ameloblastoma and four cases of ameloblastic carcinoma were assessed, including one case of ameloblastic carcinoma arising from desmoplastic ameloblastoma. In all tumour samples, CD138 was positive, whilst alpha-SMA was negative. Nestin was negative in all but one tumour sample. Conversely, the presence or absence of these markers varied in stroma samples. Nestin was observed in one ameloblastic carcinoma stroma sample, whilst CD138 was positive in one ameloblastoma case, one desmoplastic ameloblastoma case, and in two ameloblastic carcinoma stroma samples. Finally, alpha-SMA was found positive only in the desmoplastic ameloblastoma stroma sample. Our results suggest nestin expression to be an indicator for ameloblastic carcinoma, and CD138 and alpha-SMA to be promising biomarkers for the malignant transformation of ameloblastoma. Our data showed that nestin, CD138, and alpha-SMA are novel biomarkers for a better understanding of the origins and behaviour of ameloblastic tumours.

Suggested Citation

  • Callisthenis Yiannis & Massimo Mascolo & Michele Davide Mignogna & Silvia Varricchio & Valentina Natella & Gaetano De Rosa & Roberto Lo Giudice & Cosimo Galletti & Rita Paolini & Antonio Celentano, 2021. "Expression Profile of Stemness Markers CD138, Nestin and Alpha-SMA in Ameloblastic Tumours," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3899-:d:532146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/3899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/3899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tannishtha Reya & Sean J. Morrison & Michael F. Clarke & Irving L. Weissman, 2001. "Stem cells, cancer, and cancer stem cells," Nature, Nature, vol. 414(6859), pages 105-111, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeinab Tavasoli & Parviz Abdolmaleki & Seyed Javad Mowla & Faezeh Ghanati & Amir Sabet Sarvestani, 2009. "Investigation of the effects of static magnetic field on apoptosis in bone marrow stem cells of rat," Environment Systems and Decisions, Springer, vol. 29(2), pages 220-224, June.
    2. Siegmund Kimberly D. & Marjoram Paul & Shibata Darryl, 2008. "Modeling DNA Methylation in a Population of Cancer Cells," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-23, June.
    3. Meacci, Luca & Primicerio, Mario & Buscaglia, Gustavo Carlos, 2021. "Growth of tumours with stem cells: The effect of crowding and ageing of cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    4. Shuyan Liu & Chengfei Liu & Xiaoyun Min & Yuanyuan Ji & Na Wang & Dan Liu & Jiangyi Cai & Ke Li, 2013. "Prognostic Value of Cancer Stem Cell Marker Aldehyde Dehydrogenase in Ovarian Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    5. Nikolay Bessonov & Guillaume Pinna & Andrey Minarsky & Annick Harel-Bellan & Nadya Morozova, 2019. "Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-24, November.
    6. Christopher R S Banerji & Simone Severini & Carlos Caldas & Andrew E Teschendorff, 2015. "Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-23, March.
    7. Qing Chen & Xin Zhang & Wei-Min Li & Yu-Qiang Ji & Hao-Zhe Cao & Pengsheng Zheng, 2014. "Prognostic Value of LGR5 in Colorectal Cancer: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    8. Peter Kovacic & Ratnasamy Somanathan, 2017. "Unifying Mechanism for Nutrients as Anticancer Agents: Electron Transfer, Reactive Oxygen Species and Oxidative Stress," Global Journal of Health Science, Canadian Center of Science and Education, vol. 9(8), pages 1-66, August.
    9. Isabelle Bartram & Jonathan M Jeschke, 2019. "Do cancer stem cells exist? A pilot study combining a systematic review with the hierarchy-of-hypotheses approach," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    10. Tang Peng & Ma Qinghua & Tang Zhenning & Wang Kaifa & Jiang Jun, 2011. "Long-Term Sphere Culture Cannot Maintain a High Ratio of Cancer Stem Cells: A Mathematical Model and Experiment," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-6, November.
    11. N. Timurkaan & H. Eroksuz & A. Cevik & B. Karabulut, 2016. "Cutaneous leiomyosarcoma with osteoid metaplasia in a budgerigar (Melopsittacus undulatus): a case report," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 61(9), pages 533-537.
    12. Tin-Lok Wong & Jia-Jian Loh & Shixun Lu & Helen H. N. Yan & Hoi Cheong Siu & Ren Xi & Dessy Chan & Max J. F. Kam & Lei Zhou & Man Tong & John A. Copland & Leilei Chen & Jing-Ping Yun & Suet Yi Leung &, 2023. "ADAR1-mediated RNA editing of SCD1 drives drug resistance and self-renewal in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Vincenzo Salemme & Mauro Vedelago & Alessandro Sarcinella & Federico Moietta & Alessio Piccolantonio & Enrico Moiso & Giorgia Centonze & Marta Manco & Andrea Guala & Alessia Lamolinara & Costanza Ange, 2023. "p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Chahrazed Benosman & Bedr’Eddine Aïnseba & Arnaud Ducrot, 2015. "Optimization of Cytostatic Leukemia Therapy in an Advection–Reaction–Diffusion Model," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 296-325, October.
    15. Junho Lee & Jin Su Kim & Yangjin Kim, 2021. "Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-28, October.
    16. Octavio Martínez & M Humberto Reyes-Valdés & Luis Herrera-Estrella, 2010. "Cancer Reduces Transcriptome Specialization," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-10, May.
    17. Deeptha Ishwar & Rupa Haldavnekar & Krishnan Venkatakrishnan & Bo Tan, 2022. "Minimally invasive detection of cancer using metabolic changes in tumor-associated natural killer cells with Oncoimmune probes," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Sophie G. Kellaway & Sandeep Potluri & Peter Keane & Helen J. Blair & Luke Ames & Alice Worker & Paulynn S. Chin & Anetta Ptasinska & Polina K. Derevyanko & Assunta Adamo & Daniel J. L. Coleman & Naee, 2024. "Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    19. L. Paige Ferguson & Jovylyn Gatchalian & Matthew L. McDermott & Mari Nakamura & Kendall Chambers & Nirakar Rajbhandari & Nikki K. Lytle & Sara Brin Rosenthal & Michael Hamilton & Sonia Albini & Martin, 2023. "Smarcd3 is an epigenetic modulator of the metabolic landscape in pancreatic ductal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Lina Liu & Ana Vujovic & Nandan P. Deshpande & Shashank Sathe & Govardhan Anande & He Tian Tony Chen & Joshua Xu & Mark D. Minden & Gene W. Yeo & Ashwin Unnikrishnan & Kristin J. Hope & Yu Lu, 2022. "The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3899-:d:532146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.