IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i3p1146-d488545.html
   My bibliography  Save this article

Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids

Author

Listed:
  • Stefano Bertacchi

    (BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

  • Stefania Pagliari

    (ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

  • Chiara Cantù

    (BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

  • Ilaria Bruni

    (ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

  • Massimo Labra

    (ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

  • Paola Branduardi

    (BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy)

Abstract

In the context of the global need to move towards circular economies, microbial cell factories can be employed thanks to their ability to use side-stream biomasses from the agro-industrial sector to obtain additional products. The valorization of residues allows for better and complete use of natural resources and, at the same time, for the avoidance of waste management to address our needs. In this work, we focused our attention on the microbial valorization of cinnamon waste material after polyphenol extraction (C-PEW) ( Cinnamomum verum J.Presl), generally discarded without any additional processing. The sugars embedded in C-PEW were released by enzymatic hydrolysis, more compatible than acid hydrolysis with the subsequent microbial cultivation. We demonstrated that the yeast Rhodosporidium toruloides was able to grow and produce up to 2.00 (±0.23) mg/L of carotenoids in the resulting hydrolysate as a sole carbon and nitrogen source despite the presence of antimicrobial compounds typical of cinnamon. To further extend the potential of our finding, we tested other fungal cell factories for growth on the same media. Overall, these results are opening the possibility to develop separate hydrolysis and fermentation (SHF) bioprocesses based on C-PEW and microbial biotransformation to obtain high-value molecules.

Suggested Citation

  • Stefano Bertacchi & Stefania Pagliari & Chiara Cantù & Ilaria Bruni & Massimo Labra & Paola Branduardi, 2021. "Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids," IJERPH, MDPI, vol. 18(3), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:1146-:d:488545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/3/1146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/3/1146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefania Bracco & Ozgul Calicioglu & Marta Gomez San Juan & Alessandro Flammini, 2018. "Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Lourdes Ordoñez Olivo & Zoltán Lakner, 2023. "Shaping the Knowledge Base of Bioeconomy Sectors Development in Latin American and Caribbean Countries: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    3. Atreyi Pramanik & Aashna Sinha & Kundan Kumar Chaubey & Sujata Hariharan & Deen Dayal & Rakesh Kumar Bachheti & Archana Bachheti & Anuj K. Chandel, 2023. "Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    4. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    6. Pasquale Marcello Falcone & Edgardo Sica, 2019. "Assessing the Opportunities and Challenges of Green Finance in Italy: An Analysis of the Biomass Production Sector," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    7. Tina Highfill & Matthew Chambers, 2023. "Developing a National Measure of the Economic Contributions of the Bioeconomy," BEA Working Papers 0206, Bureau of Economic Analysis.
    8. Simen Pedersen & Kristin E. Gangås & Madhu Chetri & Harry P. Andreassen, 2020. "Economic Gain vs. Ecological Pain—Environmental Sustainability in Economies Based on Renewable Biological Resources," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    9. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    10. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    11. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    12. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    13. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    14. Timo Kuosmanen & Natalia Kuosmanen & Andrea El-Meligi & Tevecia Ronzon & Patricia Gurria & Susanne Iost & Robert M’Barek, 2020. "How big is the bioeconomy?," JRC Research Reports JRC120324, Joint Research Centre.
    15. Xun Wei & Jie Luo & Aqing Pu & Qianqian Liu & Lei Zhang & Suowei Wu & Yan Long & Yan Leng & Zhenying Dong & Xiangyuan Wan, 2022. "From Biotechnology to Bioeconomy: A Review of Development Dynamics and Pathways," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    16. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    18. Chica-Olmo, Jorge & Sari-Hassoun, Salaheddine & Moya-Fernández, Pablo, 2020. "Spatial relationship between economic growth and renewable energy consumption in 26 European countries," Energy Economics, Elsevier, vol. 92(C).
    19. Tévécia Ronzon & Stephan Piotrowski & Saulius Tamosiunas & Lara Dammer & Michael Carus & Robert M’barek, 2020. "Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    20. Jim Philp, 2021. "Biotechnologies to Bridge the Schism in the Bioeconomy," Energies, MDPI, vol. 14(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:1146-:d:488545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.