IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i2p809-d482796.html
   My bibliography  Save this article

Bayesian Meta-Analysis for Binary Data and Prior Distribution on Models

Author

Listed:
  • Miguel-Angel Negrín-Hernández

    (Department of Quantitative Methods & TiDES Institute, University of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain)

  • María Martel-Escobar

    (Department of Quantitative Methods & TiDES Institute, University of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain)

  • Francisco-José Vázquez-Polo

    (Department of Quantitative Methods & TiDES Institute, University of Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria, Spain)

Abstract

In meta-analysis, the structure of the between-sample heterogeneity plays a crucial role in estimating the meta-parameter. A Bayesian meta-analysis for binary data has recently been proposed that measures this heterogeneity by clustering the samples and then determining the posterior probability of the cluster models through model selection. The meta-parameter is then estimated using Bayesian model averaging techniques. Although an objective Bayesian meta-analysis is proposed for each type of heterogeneity, we concentrate the attention of this paper on priors over the models. We consider four alternative priors which are motivated by reasonable but different assumptions. A frequentist validation with simulated data has been carried out to analyze the properties of each prior distribution for a set of different number of studies and sample sizes. The results show the importance of choosing an adequate model prior as the posterior probabilities for the models are very sensitive to it. The hierarchical Poisson prior and the hierarchical uniform prior show a good performance when the real model is the homogeneity, or when the sample sizes are high enough. However, the uniform prior can detect the true model when it is an intermediate model (neither homogeneity nor heterogeneity) even for small sample sizes and few studies. An illustrative example with real data is also given, showing the sensitivity of the estimation of the meta-parameter to the model prior.

Suggested Citation

  • Miguel-Angel Negrín-Hernández & María Martel-Escobar & Francisco-José Vázquez-Polo, 2021. "Bayesian Meta-Analysis for Binary Data and Prior Distribution on Models," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:809-:d:482796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/2/809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/2/809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elías Moreno, 2005. "Objective Bayesian methods for one-sided testing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(1), pages 181-198, June.
    2. Dulal K. Bhaumik & Anup Amatya & Sharon-Lise T. Normand & Joel Greenhouse & Eloise Kaizar & Brian Neelon & Robert D. Gibbons, 2012. "Meta-Analysis of Rare Binary Adverse Event Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 555-567, June.
    3. Tuyl, Frank & Gerlach, Richard & Mengersen, Kerrie, 2008. "A Comparison of BayesLaplace, Jeffreys, and Other Priors: The Case of Zero Events," The American Statistician, American Statistical Association, vol. 62, pages 40-44, February.
    4. Jensen, Shane T. & Liu, Jun S., 2008. "Bayesian Clustering of Transcription Factor Binding Motifs," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 188-200, March.
    5. Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad M. Al Amer & Christopher G. Thompson & Lifeng Lin, 2021. "Bayesian Methods for Meta-Analyses of Binary Outcomes: Implementations, Examples, and Impact of Priors," IJERPH, MDPI, vol. 18(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco-José Vázquez-Polo & Miguel-Ángel Negrín-Hernández & María Martel-Escobar, 2020. "Meta-Analysis with Few Studies and Binary Data: A Bayesian Model Averaging Approach," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    2. Christopher A. Bush & Juhee Lee & Steven N. MacEachern, 2010. "Minimally informative prior distributions for non‐parametric Bayesian analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 253-268, March.
    3. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.
    4. An Cheng & Tonghui Chen & Guogang Jiang & Xinru Han, 2021. "Can Major Public Health Emergencies Affect Changes in International Oil Prices?," IJERPH, MDPI, vol. 18(24), pages 1-13, December.
    5. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
    6. Ran Etgar & Yuval Cohen, 2022. "Optimizing termination decision for meta-heuristic search techniques that converge to a static objective-value distribution," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 249-271, March.
    7. Abel Rodr�guez & Enrique ter Horst, 2011. "Measuring expectations in options markets: an application to the S&P500 index," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1393-1405, July.
    8. Sara Wade & Stephen G. Walker & Sonia Petrone, 2014. "A Predictive Study of Dirichlet Process Mixture Models for Curve Fitting," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 580-605, September.
    9. Chai, Jian & Lu, Quanying & Hu, Yi & Wang, Shouyang & Lai, Kin Keung & Liu, Hongtao, 2018. "Analysis and Bayes statistical probability inference of crude oil price change point," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 271-283.
    10. Giacomo Bormetti & Maria Elena De Giuli & Danilo Delpini & Claudia Tarantola, 2008. "Bayesian Analysis of Value-at-Risk with Product Partition Models," Papers 0809.0241, arXiv.org, revised May 2009.
    11. Peter Mueller & Fernando Andrés Quintana & Garritt L. Page, 2024. "Regression with Variable Dimension Covariates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 185-198, November.
    12. Chen Sui-Pi & Huang Guan-Hua, 2014. "A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 275-297, June.
    13. Loschi, R.H. & Iglesias, P.L. & Arellano-Valle, R.B. & Cruz, F.R.B., 2007. "Full predictivistic modeling of stock market data: Application to change point problems," European Journal of Operational Research, Elsevier, vol. 180(1), pages 282-291, July.
    14. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    15. Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.
    16. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    17. Oh, Man-Suk, 2014. "Bayesian comparison of models with inequality and equality constraints," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 176-182.
    18. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    19. Im, Yunju & Tan, Aixin, 2021. "Bayesian subgroup analysis in regression using mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    20. James G. Booth & Brenda J. Hanley & Florian H. Hodel & Christopher S. Jennelle & Joseph Guinness & Cara E. Them & Corey I. Mitchell & Md Sohel Ahmed & Krysten L. Schuler, 2024. "Sample Size for Estimating Disease Prevalence in Free-Ranging Wildlife Populations: A Bayesian Modeling Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 438-454, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:809-:d:482796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.