IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i2p530-d477961.html
   My bibliography  Save this article

The Bayesian Design of Adaptive Clinical Trials

Author

Listed:
  • Alessandra Giovagnoli

    (Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy
    Retired.)

Abstract

This paper presents a brief overview of the recent literature on adaptive design of clinical trials from a Bayesian perspective for statistically not so sophisticated readers. Adaptive designs are attracting a keen interest in several disciplines, from a theoretical viewpoint and also—potentially—from a practical one, and Bayesian adaptive designs, in particular, have raised high expectations in clinical trials. The main conceptual tools are highlighted here, with a mention of several trial designs proposed in the literature that use these methods, including some of the registered Bayesian adaptive trials to this date. This review aims at complementing the existing ones on this topic, pointing at further interesting reading material.

Suggested Citation

  • Alessandra Giovagnoli, 2021. "The Bayesian Design of Adaptive Clinical Trials," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:530-:d:477961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/2/530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/2/530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl-Fredrik Burman & Christian Sonesson, 2006. "Are Flexible Designs Sound?," Biometrics, The International Biometric Society, vol. 62(3), pages 664-669, September.
    2. Anthony C. Atkinson & Atanu Biswas, 2005. "Bayesian Adaptive Biased-Coin Designs for Clinical Trials with Normal Responses," Biometrics, The International Biometric Society, vol. 61(1), pages 118-125, March.
    3. Guosheng Yin & Nan Chen & J. Jack Lee, 2012. "Phase II trial design with Bayesian adaptive randomization and predictive probability," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 219-235, March.
    4. Linda M. Haines & Inna Perevozskaya & William F. Rosenberger, 2003. "Bayesian Optimal Designs for Phase I Clinical Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 591-600, September.
    5. Ying Kuen Cheung & Rick Chappell, 2000. "Sequential Designs for Phase I Clinical Trials with Late-Onset Toxicities," Biometrics, The International Biometric Society, vol. 56(4), pages 1177-1182, December.
    6. Alessandra Giovagnoli, 2017. "Bayesian optimal experimental designs for binary responses in an adaptive framework," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(3), pages 260-268, May.
    7. Alessandro Baldi Antognini & Alessandra Giovagnoli, 2010. "Compound optimal allocation for individual and collective ethics in binary clinical trials," Biometrika, Biometrika Trust, vol. 97(4), pages 935-946.
    8. Yi Cheng & Yu Shen, 2005. "Bayesian adaptive designs for clinical trials," Biometrika, Biometrika Trust, vol. 92(3), pages 633-646, September.
    9. Peter F. Thall & Lurdes Y. T. Inoue & Thomas G. Martin, 2002. "Adaptive Decision Making in a Lymphocyte Infusion Trial," Biometrics, The International Biometric Society, vol. 58(3), pages 560-568, September.
    10. Steffen Ventz & Giovanni Parmigiani & Lorenzo Trippa, 2017. "Combining Bayesian experimental designs and frequentist data analyses: motivations and examples," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(3), pages 302-313, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bethany Jablonski Horton & Nolan A. Wages & Ryan D. Gentzler, 2021. "Bayesian Design for Identifying Cohort-Specific Optimal Dose Combinations Based on Multiple Endpoints: Application to a Phase I Trial in Non-Small Cell Lung Cancer," IJERPH, MDPI, vol. 18(21), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanqing Yi & Yuan Yuan, 2013. "An optimal allocation for response-adaptive designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1996-2008, September.
    2. Yuan Ji & B. Nebiyou Bekele, 2009. "Adaptive Randomization for Multiarm Comparative Clinical Trials Based on Joint Efficacy/Toxicity Outcomes," Biometrics, The International Biometric Society, vol. 65(3), pages 876-884, September.
    3. Alexander M. Kaizer & Brian P. Hobbs & Joseph S. Koopmeiners, 2018. "A multi‐source adaptive platform design for testing sequential combinatorial therapeutic strategies," Biometrics, The International Biometric Society, vol. 74(3), pages 1082-1094, September.
    4. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A new inferential approach for response-adaptive clinical trials: the variance-stabilized bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 235-254, March.
    5. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    6. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    7. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials," Statistical Papers, Springer, vol. 63(1), pages 157-180, February.
    8. Erica Brittain & Dean Follmann & Song Yang, 2008. "Dynamic Comparison of Kaplan–Meier Proportions: Monitoring a Randomized Clinical Trial with a Long-Term Binary Endpoint," Biometrics, The International Biometric Society, vol. 64(1), pages 189-197, March.
    9. Yifei Zhang & Sha Cao & Chi Zhang & Ick Hoon Jin & Yong Zang, 2021. "A Bayesian adaptive phase I/II clinical trial design with late‐onset competing risk outcomes," Biometrics, The International Biometric Society, vol. 77(3), pages 796-808, September.
    10. P. Bauer, 2006. "Discussions," Biometrics, The International Biometric Society, vol. 62(3), pages 676-678, September.
    11. Jingjing Chen, 2019. "A Note of Adaptive Design in Clinical Trials," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 107-111, August.
    12. Thomas M. Braun, 2018. "Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals," Biometrics, The International Biometric Society, vol. 74(3), pages 1065-1071, September.
    13. Daniel R. Cavagnaro & Richard Gonzalez & Jay I. Myung & Mark A. Pitt, 2013. "Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach," Management Science, INFORMS, vol. 59(2), pages 358-375, February.
    14. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    15. Azriel, David, 2014. "Optimal sequential designs in phase I studies," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 288-297.
    16. Changying A. Liu & Thomas M. Braun, 2009. "Parametric non‐mixture cure models for schedule finding of therapeutic agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 225-236, May.
    17. B. Nebiyou Bekele & Yisheng Li & Yuan Ji, 2010. "Risk-Group-Specific Dose Finding Based on an Average Toxicity Score," Biometrics, The International Biometric Society, vol. 66(2), pages 541-548, June.
    18. Yan‐Cheng Chao & Thomas M. Braun & Roy N. Tamura & Kelley M. Kidwell, 2020. "A Bayesian group sequential small n sequential multiple‐assignment randomized trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 663-680, June.
    19. Georg Gutjahr & Werner Brannath & Peter Bauer, 2011. "An Approach to the Conditional Error Rate Principle with Nuisance Parameters," Biometrics, The International Biometric Society, vol. 67(3), pages 1039-1046, September.
    20. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:530-:d:477961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.