IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i2p225-236.html
   My bibliography  Save this article

Parametric non-mixture cure models for schedule finding of therapeutic agents

Author

Listed:
  • Changying A. Liu
  • Thomas M. Braun

Abstract

We propose a phase I clinical trial design that seeks to determine the cumulative safety of a series of administrations of a fixed dose of an investigational agent. In contrast with traditional phase I trials that are designed solely to find the maximum tolerated dose of the agent, our design instead identifies a maximum tolerated schedule that includes a maximum tolerated dose as well as a vector of recommended administration times. Our model is based on a non-mixture cure model that constrains the probability of dose limiting toxicity for all patients to increase monotonically with both dose and the number of administrations received. We assume a specific parametric hazard function for each administration and compute the total hazard of dose limiting toxicity for a schedule as a sum of individual administration hazards. Throughout a variety of settings motivated by an actual study in allogeneic bone marrow transplant recipients, we demonstrate that our approach has excellent operating characteristics and performs as well as the only other currently published design for schedule finding studies. We also present arguments for the preference of our non-mixture cure model over the existing model. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Changying A. Liu & Thomas M. Braun, 2009. "Parametric non-mixture cure models for schedule finding of therapeutic agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 225-236.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:225-236
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2008.00660.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Kuen Cheung & Rick Chappell, 2000. "Sequential Designs for Phase I Clinical Trials with Late-Onset Toxicities," Biometrics, The International Biometric Society, vol. 56(4), pages 1177-1182, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:225-236. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.