IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2727-d345816.html
   My bibliography  Save this article

Exploring the Environmental Exposure to Methoxychlor, α-HCH and Endosulfan–sulfate Residues in Lake Naivasha (Kenya) Using a Multimedia Fate Modeling Approach

Author

Listed:
  • Yasser Abbasi

    (Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands)

  • Chris M. Mannaerts

    (Department of Water Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, Hengelosestraat 99, 7514 AE Enschede, The Netherlands)

Abstract

Distribution of pesticide residues in the environment and their transport to surface water bodies is one of the most important environmental challenges. Fate of pesticides in the complex environments, especially in aquatic phases such as lakes and rivers, is governed by the main properties of the contaminants and the environmental properties. In this study, a multimedia mass modeling approach using the Quantitative Water Air Sediment Interaction (QWASI) model was applied to explore the fate of organochlorine pesticide residues of methoxychlor, α-HCH and endosulfan–sulfate in the lake Naivasha (Kenya). The required physicochemical data of the pesticides such as molar mass, vapor pressure, air–water partitioning coefficient (K AW ), solubility, and the Henry’s law constant were provided as the inputs of the model. The environment data also were collected using field measurements and taken from the literature. The sensitivity analysis of the model was applied using One At a Time (OAT) approach and calibrated using measured pesticide residues by passive sampling method. Finally, the calibrated model was used to estimate the fate and distribution of the pesticide residues in different media of the lake. The result of sensitivity analysis showed that the five most sensitive parameters were K OC , logKow, half-life of the pollutants in water, half-life of the pollutants in sediment, and K AW . The variations of outputs for the three studied pesticide residues against inputs were noticeably different. For example, the range of changes in the concentration of α-HCH residue was between 96% to 102%, while for methoxychlor and endosulfan-sulfate it was between 65% to 125%. The results of calibration demonstrated that the model was calibrated reasonably with the R 2 of 0.65 and RMSE of 16.4. It was found that methoxychlor had a mass fraction of almost 70% in water column and almost 30% of mass fraction in the sediment. In contrast, endosulfan–sulfate had highest most fraction in the water column (>99%) and just a negligible percentage in the sediment compartment. α-HCH also had the same situation like endosulfan–sulfate (e.g., 99% and 1% in water and sediment, respectively). Finally, it was concluded that the application of QWASI in combination with passive sampling technique allowed an insight to the fate process of the studied OCPs and helped actual concentration predictions. Therefore, the results of this study can also be used to perform risk assessment and investigate the environmental exposure of pesticide residues.

Suggested Citation

  • Yasser Abbasi & Chris M. Mannaerts, 2020. "Exploring the Environmental Exposure to Methoxychlor, α-HCH and Endosulfan–sulfate Residues in Lake Naivasha (Kenya) Using a Multimedia Fate Modeling Approach," IJERPH, MDPI, vol. 17(8), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2727-:d:345816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    2. Xu, Fu-Liu & Qin, Ning & Zhu, Ying & He, Wei & Kong, Xiang-Zhen & Barbour, Michael T. & He, Qi-Shuang & Wang, Yan & Ou-Yang, Hui-Ling & Tao, Shu, 2013. "Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China," Ecological Modelling, Elsevier, vol. 252(C), pages 246-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    2. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    3. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    4. Reder, Klara & Alcamo, Joseph & Flörke, Martina, 2017. "A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers," Ecological Modelling, Elsevier, vol. 351(C), pages 129-139.
    5. Thalles Vitelli Garcez & Helder Tenório Cavalcanti & Adiel Teixeira de Almeida, 2021. "A hybrid decision support model using Grey Relational Analysis and the Additive-Veto Model for solving multicriteria decision-making problems: an approach to supplier selection," Annals of Operations Research, Springer, vol. 304(1), pages 199-231, September.
    6. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    7. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    8. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    9. Ahmadi, Mehdi & Ascough, James C. & DeJonge, Kendall C. & Arabi, Mazdak, 2014. "Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods," Ecological Modelling, Elsevier, vol. 279(C), pages 54-67.
    10. Gupta, Pranav & Bharat, Alka & McCullen, Nick & Kershaw, Tristan, 2025. "Promoting sustainable land management: An innovative approach to land-take decision-making," Land Use Policy, Elsevier, vol. 149(C).
    11. Chao Shi & Kenneth C. Land, 2021. "The Data Envelopment Analysis and Equal Weights/Minimax Methods of Composite Social Indicator Construction: a Methodological Study of Data Sensitivity and Robustness," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(4), pages 1689-1716, August.
    12. Pannier, S. & Graf, W., 2015. "Sectional global sensitivity measures," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 110-117.
    13. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    14. Yu, W. & Harris, T.J., 2009. "Parameter uncertainty effects on variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 596-603.
    15. Mohammed Abed & Ehsan Mehryaar, 2024. "A Machine Learning Approach to Predict Relative Residual Strengths of Recycled Aggregate Concrete after Exposure to High Temperatures," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
    16. Fonoberova, Maria & Fonoberov, Vladimir A. & Mezić, Igor, 2013. "Global sensitivity/uncertainty analysis for agent-based models," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 8-17.
    17. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    18. Zhang, Xiaodong & Dimitrov, Nikolay, 2024. "Variable importance analysis of wind turbine extreme responses with Shapley value explanation," Renewable Energy, Elsevier, vol. 232(C).
    19. Forrester, David I. & England, Jacqueline R. & Paul, Keryn I. & Roxburgh, Stephen H., 2024. "Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia's forest carbon stocks," Ecological Modelling, Elsevier, vol. 489(C).
    20. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2727-:d:345816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.