IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p678-d311385.html
   My bibliography  Save this article

Regional Influenza Prediction with Sampling Twitter Data and PDE Model

Author

Listed:
  • Yufang Wang

    (School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China)

  • Kuai Xu

    (School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA)

  • Yun Kang

    (Science and Mathematics Faculty, Arizona State University, Mesa, AZ 85212, USA)

  • Haiyan Wang

    (School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA)

  • Feng Wang

    (School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA)

  • Adrian Avram

    (School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA)

Abstract

The large volume of geotagged Twitter streaming data on flu epidemics provides chances for researchers to explore, model, and predict the trends of flu cases in a timely manner. However, the explosive growth of data from social media makes data sampling a natural choice. In this paper, we develop a method for influenza prediction based on the real-time tweet data from social media, and this method ensures real-time prediction and is applicable to sampling data. Specifically, we first simulate the sampling process of flu tweets, and then develop a specific partial differential equation (PDE) model to characterize and predict the aggregated flu tweet volumes. Our PDE model incorporates the effects of flu spreading, flu recovery, and active human interventions for reducing flu. Our extensive simulation results show that this PDE model can almost eliminate the data reduction effects from the sampling process: It requires lesser historical data but achieves stronger prediction results with a relative accuracy of over 90% on the 1% sampling data. Even for the more aggressive data sampling ratios such as 0.1% and 0.01% sampling, our model is still able to achieve relative accuracies of 85% and 83%, respectively. These promising results highlight the ability of our mechanistic PDE model in predicting temporal–spatial patterns of flu trends even in the scenario of small sampling Twitter data.

Suggested Citation

  • Yufang Wang & Kuai Xu & Yun Kang & Haiyan Wang & Feng Wang & Adrian Avram, 2020. "Regional Influenza Prediction with Sampling Twitter Data and PDE Model," IJERPH, MDPI, vol. 17(3), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:678-:d:311385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhenwu & Xu, Zhiting, 2019. "A delayed diffusive influenza model with two-strain and two vaccinations," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 439-453.
    2. David A Broniatowski & Michael J Paul & Mark Dredze, 2013. "National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    3. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Li & Choon-Ling Sia & Zhuo Chen & Wei Huang, 2021. "Enhancing Influenza Epidemics Forecasting Accuracy in China with Both Official and Unofficial Online News Articles, 2019–2020," IJERPH, MDPI, vol. 18(12), pages 1-13, June.
    2. Umar Albalawi & Mohammed Mustafa, 2022. "Current Artificial Intelligence (AI) Techniques, Challenges, and Approaches in Controlling and Fighting COVID-19: A Review," IJERPH, MDPI, vol. 19(10), pages 1-24, May.
    3. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    4. Li, Ruqi & Song, Yurong & Wang, Haiyan & Jiang, Guo-Ping & Xiao, Min, 2023. "Reactive–diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    2. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    3. Teruhiko Yoneyama & Sanmay Das & Mukkai Krishnamoorthy, 2012. "A Hybrid Model for Disease Spread and an Application to the SARS Pandemic," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-5.
    4. Hyekyung Woo & Youngtae Cho & Eunyoung Shim & Kihwang Lee & Gilyoung Song, 2015. "Public Trauma after the Sewol Ferry Disaster: The Role of Social Media in Understanding the Public Mood," IJERPH, MDPI, vol. 12(9), pages 1-10, September.
    5. HeeChel Kim & Hong-Woo Chun & Seonho Kim & Byoung-Youl Coh & Oh-Jin Kwon & Yeong-Ho Moon, 2017. "Longitudinal Study-Based Dementia Prediction for Public Health," IJERPH, MDPI, vol. 14(9), pages 1-16, August.
    6. Joseph H. Cook, 2013. "Principles and standards for benefit–cost analysis of public health preparedness and pandemic mitigation programs," Chapters, in: Scott O. Farrow & Richard Zerbe, Jr. (ed.), Principles and Standards for Benefit–Cost Analysis, chapter 3, pages 110-152, Edward Elgar Publishing.
    7. Paolo BRUNORI & Giuliano RESCE, 2020. "Searching for the peak Google Trends and the Covid-19 outbreak in Italy," Working Papers - Economics wp2020_05.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    8. Fernando Arias & Ariel Guerra-Adames & Maytee Zambrano & Efraín Quintero-Guerra & Nathalia Tejedor-Flores, 2022. "Analyzing Spanish-Language Public Sentiment in the Context of a Pandemic and Social Unrest: The Panama Case," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    9. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    10. Ira Puspitasari & Alia Firdauzy, 2019. "Characterizing Consumer Behavior in Leveraging Social Media for E-Patient and Health-Related Activities," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    11. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    12. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    13. Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    14. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    15. Samuel V Scarpino & James G Scott & Rosalind M Eggo & Bruce Clements & Nedialko B Dimitrov & Lauren Ancel Meyers, 2020. "Socioeconomic bias in influenza surveillance," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-19, July.
    16. Hongying Dai & Brian R. Lee & Jianqiang Hao, 2017. "Predicting Asthma Prevalence by Linking Social Media Data and Traditional Surveys," The ANNALS of the American Academy of Political and Social Science, , vol. 669(1), pages 75-92, January.
    17. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    18. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    19. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    20. Nolan E. Phillips & Brian L. Levy & Robert J. Sampson & Mario L. Small & Ryan Q. Wang, 2021. "The Social Integration of American Cities: Network Measures of Connectedness Based on Everyday Mobility Across Neighborhoods," Sociological Methods & Research, , vol. 50(3), pages 1110-1149, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:678-:d:311385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.