IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6388-d407638.html
   My bibliography  Save this article

Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route

Author

Listed:
  • Ye Pan

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yuan Yuan

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Ting Sun

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yuxin Wang

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yujing Xie

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

  • Zhengqiu Fan

    (Department of Environment Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract

Xuzhou is the hub city of the east route of China’s South-to-North Water Diversion (SNWD) project and implemented dozens of measures to ensure the water quality security of the water transmission line. In order to detect the effectiveness of water quality improvement measures, the monthly water quality data of five water quality parameters from 2005 to 2015 of six state-controlled monitoring sites in Xuzhou section were selected for analysis. The results showed that the water quality improved from 2.95 in 2005 to 2.74 in 2015, as assessed by the comprehensive water quality identification index (CWQII), and basically reached the Class III standards of China’s Environmental Quality Standard for Surface Water (GB3838-2002) from 2011 to 2015. The trend analysis showed that the decline of ammonia nitrogen (NH 3 -N) was the most obvious among the five water quality parameters. However, the concentrations of phosphorus (TP) showed significant upward trends at three sites. The positive abrupt change of time series of water quality occurred in 2009–2011. The identification of influencing factors of water quality changes by multivariate statistical methods found that the urbanization factor accompanied by a decrease in agricultural nonpoint source pollution emissions and the enhancement of wastewater treatment capacity, the closure of factories with substandard emissions and precipitation were the major influencing factors of most water quality parameters, which confirmed the effectiveness of measures for water quality improvement in Xuzhou.

Suggested Citation

  • Ye Pan & Yuan Yuan & Ting Sun & Yuxin Wang & Yujing Xie & Zhengqiu Fan, 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route," IJERPH, MDPI, vol. 17(17), pages 1-21, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6388-:d:407638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xizhi Nong & Dongguo Shao & Yi Xiao & Hua Zhong, 2019. "Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China," IJERPH, MDPI, vol. 16(12), pages 1-23, June.
    2. Komatsu, Eiji & Fukushima, Takehiko & Harasawa, Hideo, 2007. "A modeling approach to forecast the effect of long-term climate change on lake water quality," Ecological Modelling, Elsevier, vol. 209(2), pages 351-366.
    3. A. Scheili & I. Delpla & R. Sadiq & M. J. Rodriguez, 2016. "Impact of Raw Water Quality and Climate Factors on the Variability of Drinking Water Quality in Small Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2703-2718, June.
    4. Kaiyan Zhao & Huawu Wu & Wen Chen & Wei Sun & Haixia Zhang & Weili Duan & Wenjun Chen & Bin He, 2020. "Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    5. Xiaofan Yang & Xueyu Wei & Xiaoping Xu & Yu Zhang & Jincheng Li & Jie Wan, 2019. "Characteristics of Dissolved Organic Nitrogen in the Sediments of Six Water Sources in Taihu Lake, China," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    6. Aman Fang & Jihong Dong & Yingli An, 2019. "Distribution Characteristics and Pollution Assessment of Soil Heavy Metals under Different Land-Use Types in Xuzhou City, China," Sustainability, MDPI, vol. 11(7), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinfeng Zeng & Zuwen Liu & Xinggen Liu & Linan Zhang & Jun Zhang & Yangsong Zeng, 2023. "The Spatiotemporal Variations and Potential Causes of Water Quality of Headwaters of Dongjiang River, Southeastern China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Rui Xia & Yuan Zhang & Andrea Critto & Jieyun Wu & Juntao Fan & Zhirong Zheng & Yizhang Zhang, 2016. "The Potential Impacts of Climate Change Factors on Freshwater Eutrophication: Implications for Research and Countermeasures of Water Management in China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    3. Laima Česonienė & Daiva Šileikienė & Midona Dapkienė, 2021. "Influence of Anthropogenic Load in River Basins on River Water Status: A Case Study in Lithuania," Land, MDPI, vol. 10(12), pages 1-16, November.
    4. Haoyu Tian & Guo-An Yu & Ling Tong & Renzhi Li & He Qing Huang & Arika Bridhikitti & Thayukorn Prabamroong, 2019. "Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    5. Vassilis Z. Antonopoulos & Soultana K. Gianniou, 2023. "Energy Budget, Water Quality Parameters and Primary Production Modeling in Lake Volvi in Northern Greece," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    6. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    7. Sarah Null & Joshua Viers & Michael Deas & Stacy Tanaka & Jeffrey Mount, 2013. "Stream temperature sensitivity to climate warming in California’s Sierra Nevada: impacts to coldwater habitat," Climatic Change, Springer, vol. 116(1), pages 149-170, January.
    8. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2012. "Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area," Climatic Change, Springer, vol. 112(3), pages 859-880, June.
    9. Yu Zhou & Xinmin Wang & Weiying Li & Shuyun Zhou & Laizhu Jiang, 2023. "Water Quality Evaluation and Pollution Source Apportionment of Surface Water in a Major City in Southeast China Using Multi-Statistical Analyses and Machine Learning Models," IJERPH, MDPI, vol. 20(1), pages 1-16, January.
    10. Boudreaux, Greg & Lupi, Frank & Sohngen, Brent & Xu, Alan, 2023. "Measuring beachgoer preferences for avoiding harmful algal blooms and bacterial warnings," Ecological Economics, Elsevier, vol. 204(PA).
    11. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    12. Bayan Nuralykyzy & Pan Wang & Xiaoqian Deng & Shaoshan An & Yimei Huang, 2021. "Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    13. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    14. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    15. Zezhou Wu & Mingyang Jiang & Yuzhu Cai & Hao Wang & Shenghan Li, 2019. "What Hinders the Development of Green Building? An Investigation of China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    16. Yu Song & Xiaodong Song & Guofan Shao, 2020. "Response of Water Quality to Landscape Patterns in an Urbanized Watershed in Hangzhou, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    17. Martin Schmid & Stefan Hunziker & Alfred Wüest, 2014. "Lake surface temperatures in a changing climate: a global sensitivity analysis," Climatic Change, Springer, vol. 124(1), pages 301-315, May.
    18. Christine J. Kirchhoff & Julia A. Flagg & Yan Zhuang & Berdakh Utemuratov, 2019. "Understanding and Improving Enforcement and Compliance with Drinking Water Standards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1647-1663, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6388-:d:407638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.