IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p49-d299876.html
   My bibliography  Save this article

A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China

Author

Listed:
  • Junfei Chen

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    Business School, Hohai University, Nanjing 211100, China)

  • Qian Li

    (Business School, Hohai University, Nanjing 211100, China)

  • Huimin Wang

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    Business School, Hohai University, Nanjing 211100, China)

  • Menghua Deng

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    Business School, Hohai University, Nanjing 211100, China)

Abstract

The Yangtze River Delta (YRD) is one of the most developed regions in China. This is also a flood-prone area where flood disasters are frequently experienced; the situations between the people–land nexus and the people–water nexus are very complicated. Therefore, the accurate assessment of flood risk is of great significance to regional development. The paper took the YRD urban agglomeration as the research case. The driving force, pressure, state, impact and response (DPSIR) conceptual framework was established to analyze the indexes of flood disasters. The random forest (RF) algorithm was used to screen important indexes of floods risk, and a risk assessment model based on the radial basis function (RBF) neural network was constructed to evaluate the flood risk level in this region from 2009 to 2018. The risk map showed the I-V level of flood risk in the YRD urban agglomeration from 2016 to 2018 by using the geographic information system (GIS). Further analysis indicated that the indexes such as flood season rainfall, urban impervious area ratio, gross domestic product (GDP) per square kilometer of land, water area ratio, population density and emergency rescue capacity of public administration departments have important influence on flood risk. The flood risk has been increasing in the YRD urban agglomeration during the past ten years under the urbanization background, and economic development status showed a significant positive correlation with flood risks. In addition, there were serious differences in the rising rate of flood risks and the status quo among provinces. There are still a few cities that have stabilized at a better flood-risk level through urban flood control measures from 2016 to 2018. These results were basically in line with the actual situation, which validated the effectiveness of the model. Finally, countermeasures and suggestions for reducing the urban flood risk in the YRD region were proposed, in order to provide decision support for flood control, disaster reduction and emergency management in the YRD region.

Suggested Citation

  • Junfei Chen & Qian Li & Huimin Wang & Menghua Deng, 2019. "A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China," IJERPH, MDPI, vol. 17(1), pages 1-21, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:49-:d:299876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Ge & Wei Xu & Zhi-Hui Gu & Yu-Chao Zhang & Lei Chen, 2011. "Risk perception and hazard mitigation in the Yangtze River Delta region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 633-648, March.
    2. Joseph Cuthbertson & Jose M. Rodriguez-Llanes & Andrew Robertson & Frank Archer, 2019. "Current and Emerging Disaster Risks Perceptions in Oceania: Key Stakeholders Recommendations for Disaster Management and Resilience Building," IJERPH, MDPI, vol. 16(3), pages 1-13, February.
    3. Emmanuel Kazuva & Jiquan Zhang & Zhijun Tong & Alu Si & Li Na, 2018. "The DPSIR Model for Environmental Risk Assessment of Municipal Solid Waste in Dar es Salaam City, Tanzania," IJERPH, MDPI, vol. 15(8), pages 1-30, August.
    4. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    5. J. C. J. H. Aerts & W. J. Botzen & K. C. Clarke & S. L. Cutter & J. W. Hall & B. Merz & E. Michel-Kerjan & J. Mysiak & S. Surminski & H. Kunreuther, 2018. "Integrating human behaviour dynamics into flood disaster risk assessment," Nature Climate Change, Nature, vol. 8(3), pages 193-199, March.
    6. Yu Qiu & Yuan Liu & Yang Liu & Yingzi Chen & Yu Li, 2019. "An Interval Two-Stage Stochastic Programming Model for Flood Resources Allocation under Ecological Benefits as a Constraint Combined with Ecological Compensation Concept," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    7. Lee, Jae Won & Lee, Jung Bok & Park, Mira & Song, Seuck Heun, 2005. "An extensive comparison of recent classification tools applied to microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 869-885, April.
    8. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    9. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    10. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardvin Kester S. Ong, 2022. "A Machine Learning Ensemble Approach for Predicting Factors Affecting STEM Students’ Future Intention to Enroll in Chemistry-Related Courses," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    2. Ardvin Kester S. Ong & Ferani Eva Zulvia & Yogi Tri Prasetyo, 2022. "“The Big One” Earthquake Preparedness Assessment among Younger Filipinos Using a Random Forest Classifier and an Artificial Neural Network," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    3. Yanlong Guo & Xingmeng Ma & Yelin Zhu & Denghang Chen & Han Zhang, 2023. "Research on Driving Factors of Forest Ecological Security: Evidence from 12 Provincial Administrative Regions in Western China," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    4. Weihua Zhang & Wuyi Cheng & Wenmei Gai, 2022. "Hazardous Chemicals Road Transportation Accidents and the Corresponding Evacuation Events from 2012 to 2020 in China: A Review," IJERPH, MDPI, vol. 19(22), pages 1-31, November.
    5. Josephine D. German & Anak Agung Ngurah Perwira Redi & Ardvin Kester S. Ong & Yogi Tri Prasetyo & Vince Louis M. Sumera, 2022. "Predicting Factors Affecting Preparedness of Volcanic Eruption for a Sustainable Community: A Case Study in the Philippines," Sustainability, MDPI, vol. 14(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    3. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    4. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    5. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    6. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    7. Pablo Aznar-Crespo & Antonio Aledo & Joaquín Melgarejo-Moreno & Arturo Vallejos-Romero, 2021. "Adapting Social Impact Assessment to Flood Risk Management," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    8. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.
    9. Carmine Gambardella & Rosaria Parente & Anna Scotto di Santolo & Giuseppe Ciaburro, 2022. "New Digital Field of Drawing and Survey for the Automatic Identification of Debris Accumulation in Flooded Areas," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    10. Keshun Zhang & Elizabeth J. Parks-Stamm & Yaqi Ji & Haiyan Wang, 2021. "Beyond Flood Preparedness: Effects of Experience, Trust, and Perceived Risk on Preparation Intentions and Financial Risk-Taking in China," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    11. Philip Bubeck & Lisa Berghäuser & Paul Hudson & Annegret H. Thieken, 2020. "Using Panel Data to Understand the Dynamics of Human Behavior in Response to Flooding," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2340-2359, November.
    12. Knighton, James & Buchanan, Brian & Guzman, Christian & Elliott, Rebecca & White, Eric & Rahm, Brian, 2020. "Predicting flood insurance claims with hydrologic and socioeconomic demographics via machine learning: exploring the roles of topography, minority populations, and political dissimilarity," LSE Research Online Documents on Economics 105761, London School of Economics and Political Science, LSE Library.
    13. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    14. Frénay, Benoît & Doquire, Gauthier & Verleysen, Michel, 2014. "Estimating mutual information for feature selection in the presence of label noise," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 832-848.
    15. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    16. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    17. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    18. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    19. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    20. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:49-:d:299876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.