IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i11p1950-d236369.html
   My bibliography  Save this article

Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijing-Tianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data

Author

Listed:
  • Wanchun Leng

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Guojin He

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    Key Laboratory of Earth Observation Hainan Province, Sanya 572029, China)

  • Wei Jiang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

Abstract

With rapid urbanization and economic development, artificial lighting at night brings convenience to human life but also causes a considerable urban environmental pollution issue. This study employed the Mann-Kendall non-parametric test, nighttime light indices, and the standard deviation method to investigate the spatio-temporal characteristics of artificial lighting in the Beijing-Tianjin-Hebei region. Moreover, nighttime light imagery from the Defense Meteorological Satellite Program Operational Linescan System, socioeconomic data, and high-resolution satellite images were combined to comprehensively explore the driving factors of urban artificial lighting change. The results showed the following: (1) Overall, there was an increasing trend in artificial lighting in the Beijing-Tianjin-Hebei region, which accounted for approximately 56.87% of the total study area. (2) The change in artificial lighting in the entire area was relatively stable. The artificial lighting in the northwest area changed faster than that in the southeast area, and the areas where artificial lighting changed the most were Beijing, Tianjin and Tangshan. (3) The fastest growth of artificial lighting was in Chengde and Zhangjiakou, where the rates of increase were 334% and 251%, respectively. The spatial heterogeneity of artificial lighting in economically developed cities was higher than that in economically underdeveloped cities such as Chengde and Zhangjiakou. (4) Multi-source data were combined to analyse the driving factors of urban artificial lighting in the entire area. The Average Population of Districts under City ( R 2 = 0.77) had the strongest effect on artificial lighting. Total Passenger Traffic ( R 2 = 0.54) had the most non-obvious effect. At different city levels, driving factors varied with differences of economy, geographical location, and the industrial structures of cities. Urban expansion, transportation hubs, and industries were the major reasons for the significant change in nighttime light. Urban artificial lighting represents a trend of overuse closely related to nighttime light pollution. This study of artificial lighting contributes to the rational planning of urban lighting systems, the prevention and control of nighttime light pollution, and the creation of liveable and ecologically green cities.

Suggested Citation

  • Wanchun Leng & Guojin He & Wei Jiang, 2019. "Investigating the Spatiotemporal Variability and Driving Factors of Artificial Lighting in the Beijing-Tianjin-Hebei Region Using Remote Sensing Imagery and Socioeconomic Data," IJERPH, MDPI, vol. 16(11), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1950-:d:236369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/11/1950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/11/1950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    2. Yu, Nannan & de Jong, Martin & Storm, Servaas & Mi, Jianing, 2013. "Spatial spillover effects of transport infrastructure: evidence from Chinese regions," Journal of Transport Geography, Elsevier, vol. 28(C), pages 56-66.
    3. Christopher D. Elvidge & Daniel Ziskin & Kimberly E. Baugh & Benjamin T. Tuttle & Tilottama Ghosh & Dee W. Pack & Edward H. Erwin & Mikhail Zhizhin, 2009. "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, MDPI, vol. 2(3), pages 1-28, August.
    4. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    5. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Li & Chengmeng Zhang & Yan Tong & Yalu Zhang & Gong Chen, 2022. "Prediction of the Old-Age Dependency Ratio in Chinese Cities Using DMSP/OLS Nighttime Light Data," IJERPH, MDPI, vol. 19(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    2. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    3. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    4. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    5. Yongguang Zhu & Deyi Xu & Saleem H. Ali & Ruiyang Ma & Jinhua Cheng, 2019. "Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference," Energies, MDPI, vol. 12(16), pages 1-14, August.
    6. Gang Xu & Tianyi Zeng & Hong Jin & Cong Xu & Ziqi Zhang, 2023. "Spatio-Temporal Variations and Influencing Factors of Country-Level Carbon Emissions for Northeast China Based on VIIRS Nighttime Lighting Data," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    7. Yongxing Li & Wei Guo & Peixian Li & Xuesheng Zhao & Jinke Liu, 2023. "Exploring the Spatiotemporal Dynamics of CO 2 Emissions through a Combination of Nighttime Light and MODIS NDVI Data," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    8. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    9. Cui, Yuanzheng & Zhang, Weishi & Wang, Can & Streets, David G. & Xu, Ying & Du, Mingxi & Lin, Jintai, 2019. "Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012–2016 due to natural gas usage," Applied Energy, Elsevier, vol. 241(C), pages 245-256.
    10. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    11. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    12. Yanjun Wang & Fei Teng & Mengjie Wang & Shaochun Li & Yunhao Lin & Hengfan Cai, 2022. "Monitoring Spatiotemporal Distribution of the GDP of Major Cities in China during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(13), pages 1-29, June.
    13. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    14. Yang Zhong & Aiwen Lin & Zhigao Zhou, 2019. "Evolution of the Pattern of Spatial Expansion of Urban Land Use in the Poyang Lake Ecological Economic Zone," IJERPH, MDPI, vol. 16(1), pages 1-14, January.
    15. Yajing Liu & Shuai Zhou & Ge Zhang, 2023. "Spatio-Temporal Dynamics and Driving Forces of Multi-Scale Emissions Based on Nighttime Light Data: A Case Study of the Pearl River Delta Urban Agglomeration," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    16. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    17. Zhong, Liang & Liu, Xiaosheng & Ao, Jianfeng, 2022. "Spatiotemporal dynamics evaluation of pixel-level gross domestic product, electric power consumption, and carbon emissions in countries along the belt and road," Energy, Elsevier, vol. 239(PA).
    18. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    19. Jie Zhao & Nguyen Xuan Thinh & Cheng Li, 2017. "Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption in China: A Case Study of 20 Provincial Capital Cities," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    20. Kaifang Shi & Qingyuan Yang & Yuanqing Li, 2019. "Are Karst Rocky Desertification Areas Affected by Increasing Human Activity in Southern China? An Empirical Analysis from Nighttime Light Data," IJERPH, MDPI, vol. 16(21), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1950-:d:236369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.