IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i11p1311-d116689.html
   My bibliography  Save this article

An Improved Graph Model for Conflict Resolution Based on Option Prioritization and Its Application

Author

Listed:
  • Kedong Yin

    (School of Economics, Ocean University of China, Qingdao 266100, China
    Ocean Development Research Institute, Major Research Base of Humanities and Social Sciences of Ministry of Education, Ocean University of China, Qingdao 266100, China)

  • Li Yu

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Xuemei Li

    (School of Economics, Ocean University of China, Qingdao 266100, China
    Ocean Development Research Institute, Major Research Base of Humanities and Social Sciences of Ministry of Education, Ocean University of China, Qingdao 266100, China)

Abstract

In order to quantitatively depict differences regarding the preferences of decision makers for different states, a score function is proposed. As a foundation, coalition motivation and real-coalition analysis are discussed when external circumstance or opportunity costs are considering. On the basis of a confidence-level function, we establish the score function using a “preference tree”. We not only measure the preference for each state, but we also build a collation improvement function to measure coalition motivation and to construct a coordinate system in which to analyze real-coalition stability. All of these developments enhance the applicability of the graph model for conflict resolution (GMCR). Finally, an improved GMCR is applied in the “Changzhou Conflict” to demonstrate how it can be conveniently utilized in practice.

Suggested Citation

  • Kedong Yin & Li Yu & Xuemei Li, 2017. "An Improved Graph Model for Conflict Resolution Based on Option Prioritization and Its Application," IJERPH, MDPI, vol. 14(11), pages 1-14, October.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:11:p:1311-:d:116689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/11/1311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/11/1311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amer Obeidi & Keith W. Hipel & D. Marc Kilgour, 2005. "The Role of Emotions in Envisioning Outcomes in Conflict Analysis," Group Decision and Negotiation, Springer, vol. 14(6), pages 481-500, November.
    2. D. Marc Kilgour & Keith W. Hipel & Liping Fang & Xiaoyong (John) Peng, 2001. "Coalition Analysis in Group Decision Support," Group Decision and Negotiation, Springer, vol. 10(2), pages 159-175, March.
    3. Yu Chu & Keith W. Hipel & Liping Fang & Huimin Wang, 2015. "Systems methodology for resolving water conflicts: the Zhanghe River water allocation dispute in China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(1), pages 106-119, March.
    4. Kevin W. Li & Keith W. Hipel & D. Marc Kilgour & Donald Noakes, 2005. "Integrating Uncertain Preferences into Status Quo Analysis with Applications to an Environmental Conflict," Group Decision and Negotiation, Springer, vol. 14(6), pages 461-479, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shinan Zhao & Haiyan Xu, 2019. "A Novel Preference Elicitation Technique Based on a Graph Model and Its Application to a Brownfield Redevelopment Conflict in China," IJERPH, MDPI, vol. 16(21), pages 1-14, October.
    2. Ning Zhang & Zaiwu Gong & Kedong Yin & Yuhong Wang, 2018. "Special Issue “Decision Models in Green Growth and Sustainable Development”," IJERPH, MDPI, vol. 15(6), pages 1-8, May.
    3. Qingye Han & Yuming Zhu & Ginger Y. Ke & Hongli Lin, 2019. "A Two-Stage Decision Framework for Resolving Brownfield Conflicts," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    4. Jing Yu & Ling-Ling Pei, 2018. "Investigation of a Brownfield Conflict Considering the Strength of Preferences," IJERPH, MDPI, vol. 15(2), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
    2. Wu, Nannan & Xu, Yejun & Kilgour, D. Marc & Fang, Liping, 2023. "The graph model for composite decision makers and its application to a water resource conflict," European Journal of Operational Research, Elsevier, vol. 306(1), pages 308-321.
    3. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    4. Nannan Wu & Yejun Xu & D. Marc Kilgour, 2019. "Water allocation analysis of the Zhanghe River basin using the Graph Model for Conflict Resolution with incomplete fuzzy preferences," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    5. Augusto Getirana & Valéria de Fátima Malta, 2010. "Investigating Strategies of an Irrigation Conflict," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2893-2916, September.
    6. Leandro Chaves Rêgo & Giannini Italino Alves Vieira, 2017. "Symmetric Sequential Stability in the Graph Model for Conflict Resolution with Multiple Decision Makers," Group Decision and Negotiation, Springer, vol. 26(4), pages 775-792, July.
    7. Al-Mutairi, M.S. & Hipel, K.W. & Kamel, M.S., 2008. "Trust and cooperation from a fuzzy perspective," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(5), pages 430-446.
    8. M. Nassereddine & M. A. Ellakkis & A. Azar & M. D. Nayeri, 2021. "Developing a Multi-methodology for Conflict Resolution: Case of Yemen’s Humanitarian Crisis," Group Decision and Negotiation, Springer, vol. 30(2), pages 301-320, April.
    9. Inohara, Takehiro, 2016. "State transition time analysis in the Graph Model for Conflict Resolution," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 372-382.
    10. Katharina Burger & Leroy White & Mike Yearworth, 2018. "Why so Serious? Theorising Playful Model-Driven Group Decision Support with Situated Affectivity," Group Decision and Negotiation, Springer, vol. 27(5), pages 789-810, October.
    11. Takehiro Inohara & Keith W. Hipel, 2008. "Coalition analysis in the graph model for conflict resolution," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 343-359, December.
    12. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    13. Thomas Homer-Dixon & Manjana Milkoreit & Steven J. Mock & Tobias Schröder & Paul Thagard, 2014. "The Conceptual Structure of Social Disputes," SAGE Open, , vol. 4(1), pages 21582440145, March.
    14. Inohara, Takehiro, 2023. "Similarities, differences, and preservation of efficiencies, with application to attitude analysis, within the Graph Model for Conflict Resolution," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1330-1348.
    15. Keith W. Hipel & Amer Obeidi, 2005. "Trade versus the environment: Strategic settlement from a systems engineering perspective," Systems Engineering, John Wiley & Sons, vol. 8(3), pages 211-233, September.
    16. Haiyan Xu & D. Kilgour & Keith Hipel & Edward McBean, 2014. "Theory and implementation of coalitional analysis in cooperative decision making," Theory and Decision, Springer, vol. 76(2), pages 147-171, February.
    17. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    18. Lukasz W. Jochemczyk & Andrzej Nowak, 2010. "Constructing a Network of Shared Agreement: A Model of Communication Processes in Negotiations," Group Decision and Negotiation, Springer, vol. 19(6), pages 591-620, November.
    19. Eva-Maria Pesendorfer & Sabine T. Koeszegi, 2007. "Social Embeddedness in Electronic Negotiations," Group Decision and Negotiation, Springer, vol. 16(4), pages 399-415, July.
    20. Giannini Italino Alves Vieira & Leandro Chaves Rêgo, 2020. "Berge Solution Concepts in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 29(1), pages 103-125, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:11:p:1311-:d:116689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.