IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i7p7184-7194d38098.html
   My bibliography  Save this article

Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)

Author

Listed:
  • Christy E. Manyi-Loh

    (Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa
    Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

  • Sampson N. Mamphweli

    (Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

  • Edson L. Meyer

    (Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

  • Anthony I. Okoh

    (Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

  • Golden Makaka

    (Department of Physics, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

  • Michael Simon

    (Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa)

Abstract

Anaerobic digestion of animal manure in biogas digesters has shown promise as a technology in reducing the microbial load to safe and recommended levels. We sought to treat dairy manure obtained from the Fort Hare Dairy Farm by investigating the survival rates of bacterial pathogens, through a total viable plate count method, before, during and after mesophilic anaerobic digestion. Different microbiological media were inoculated with different serial dilutions of manure samples that were withdrawn from the biogas digester at 3, 7 and 14 day intervals to determine the viable cells. Data obtained indicated that the pathogens of public health importance were 90%–99% reduced in the order: Campylobacter sp. (18 days) < Escherichia coli sp. (62 days) < Salmonella sp. (133 days) from a viable count of 10.1 × 10 3 , 3.6 × 10 5 , 7.4 × 10 3 to concentrations below the detection limit (DL = 10 2 cfu/g manure), respectively. This disparity in survival rates may be influenced by the inherent characteristics of these bacteria, available nutrients as well as the stages of the anaerobic digestion process. In addition, the highest p -value i.e. , 0.957 for E. coli showed the statistical significance of its model and the strongest correlation between its reductions with days of digestion. In conclusion, the results demonstrated that the specific bacterial pathogens in manure can be considerably reduced through anaerobic digestion after 133 days.

Suggested Citation

  • Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Anthony I. Okoh & Golden Makaka & Michael Simon, 2014. "Inactivation of Selected Bacterial Pathogens in Dairy Cattle Manure by Mesophilic Anaerobic Digestion (Balloon Type Digester)," IJERPH, MDPI, vol. 11(7), pages 1-11, July.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:7:p:7184-7194:d:38098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/7/7184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/7/7184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Anthony I. Okoh & Golden Makaka & Michael Simon, 2013. "Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy," IJERPH, MDPI, vol. 10(9), pages 1-28, September.
    2. B. Lutge & B. Standish, 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Taylor & Francis Journals, vol. 52(2), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christy Echakachi Manyi-Loh & Anthony Ifeanyin Okoh & Ryk Lues, 2023. "Prevalence of Multidrug-Resistant Bacteria (Enteropathogens) Recovered from a Blend of Pig Manure and Pinewood Saw Dust during Anaerobic Co-Digestion in a Steel Biodigester," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    2. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Golden Makaka & Michael Simon & Anthony I. Okoh, 2016. "An Overview of the Control of Bacterial Pathogens in Cattle Manure," IJERPH, MDPI, vol. 13(9), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    2. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    5. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Anthony I. Okoh & Golden Makaka & Michael Simon, 2013. "Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy," IJERPH, MDPI, vol. 10(9), pages 1-28, September.
    6. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    7. Christy E. Manyi-Loh & Sampson N. Mamphweli & Edson L. Meyer & Golden Makaka & Michael Simon & Anthony I. Okoh, 2016. "An Overview of the Control of Bacterial Pathogens in Cattle Manure," IJERPH, MDPI, vol. 13(9), pages 1-27, August.
    8. Yonglan Tian & Huayong Zhang & Lei Zheng & Shusen Li & He Hao & Meixiao Yin & Yudong Cao & Hai Huang, 2019. "Process Analysis of Anaerobic Fermentation Exposure to Metal Mixtures," IJERPH, MDPI, vol. 16(14), pages 1-21, July.
    9. Toqeer Ahmed & Miklas Scholz & Furat Al-Faraj & Wajeeha Niaz, 2016. "Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan," IJERPH, MDPI, vol. 13(11), pages 1-16, October.
    10. Lucía Salguero-Puerta & Juan Carlos Leyva-Díaz & Francisco Joaquín Cortés-García & Valentín Molina-Moreno, 2019. "Sustainability Indicators Concerning Waste Management for Implementation of the Circular Economy Model on the University of Lome (Togo) Campus," IJERPH, MDPI, vol. 16(12), pages 1-21, June.
    11. Yonglan Tian & Huayong Zhang & Lei Zheng & Shusen Li & He Hao & Hai Huang, 2019. "Effect of Zn Addition on the Cd-Containing Anaerobic Fermentation Process: Biodegradation and Microbial Communities," IJERPH, MDPI, vol. 16(16), pages 1-17, August.
    12. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:7:p:7184-7194:d:38098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.