IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i6p264-d1680991.html
   My bibliography  Save this article

An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels

Author

Listed:
  • Yiannis Kiouvrekis

    (Mathematics, Computer Science and Artificial Intelligence Lab, Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
    Department of Information Technologies, University of Limassol, Limassol 3020, Cyprus
    Business School, University of Nicosia, Nicosia 2417, Cyprus)

  • Katerina Gkirtzou

    (Institute for Language and Speech Processing, Athena Research Center, 15125 Athens, Greece)

  • Sotiris Zikas

    (Mathematics, Computer Science and Artificial Intelligence Lab, Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece)

  • Dimitris Kalatzis

    (Mathematics, Computer Science and Artificial Intelligence Lab, Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece)

  • Theodor Panagiotakopoulos

    (Department of Management Science and Technology, University of Patras, 26334 Patras, Greece)

  • Zoran Lajic

    (Angelicoussis Group, 17674 Athens, Greece)

  • Dimitris Papathanasiou

    (Angelicoussis Group, 17674 Athens, Greece)

  • Ioannis Filippopoulos

    (Shipping Operations and Computer Science, University of Limassol, Limassol 3086, Cyprus)

Abstract

In the evolving landscape of green shipping, the accurate estimation of shaft power is critical for reducing fuel consumption and greenhouse gas emissions. This study presents an explainable machine learning framework for shaft power prediction, utilising real-world Internet of Things (IoT) sensor data collected from nine (9) Very Large Crude Carriers (VLCCs) over a 36-month period. A diverse set of models—ranging from traditional algorithms such as Decision Trees and Support Vector Machines to advanced ensemble methods like XGBoost and LightGBM—were developed and evaluated. Model performance was assessed using the coefficient of determination ( R 2 ) and RMSE, with XGBoost achieving the highest accuracy ( R 2 = 0.9490 , RMSE 888) and LightGBM being close behind ( R 2 = 0.9474 , RMSE 902), with both substantially exceeding the industry baseline model ( R 2 = 0.9028 , RMSE 1500). Explainability was integrated through SHapley Additive exPlanations (SHAP), offering detailed insights into the influence of each input variable. Features such as draft, GPS speed, and time since last dry dock consistently emerged as key predictors. The results demonstrate the robustness and interpretability of tree-based methods, offering a data-driven alternative to traditional performance estimation techniques and supporting the maritime industry’s transition toward more efficient and sustainable operations.

Suggested Citation

  • Yiannis Kiouvrekis & Katerina Gkirtzou & Sotiris Zikas & Dimitris Kalatzis & Theodor Panagiotakopoulos & Zoran Lajic & Dimitris Papathanasiou & Ioannis Filippopoulos, 2025. "An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels," Future Internet, MDPI, vol. 17(6), pages 1-24, June.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:6:p:264-:d:1680991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/6/264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/6/264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Lei & Liu, Tianyuan & Xie, Yonghui & Zhang, Di & Xia, Xinlei, 2021. "Real-time power prediction approach for turbine using deep learning techniques," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
    2. Liu, Jintao & Chen, Liangchao & Xu, Wei & Feng, Mingfei & Han, Yongming & Xia, Tao & Geng, Zhiqiang, 2023. "Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm," Energy, Elsevier, vol. 262(PB).
    3. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    4. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    5. Li, Jinxing & Liu, Tianyuan & Zhu, Guangya & Li, Yunzhu & Xie, Yonghui, 2023. "Uncertainty quantification and aerodynamic robust optimization of turbomachinery based on graph learning methods," Energy, Elsevier, vol. 273(C).
    6. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    7. Shun Dai & Xiaoyi Zhang & Mingyu Luo, 2024. "A Novel Data-Driven Approach for Predicting the Performance Degradation of a Gas Turbine," Energies, MDPI, vol. 17(4), pages 1-17, February.
    8. Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
    9. Wang, Qi & Yang, Li & Huang, Kang, 2022. "Fast prediction and sensitivity analysis of gas turbine cooling performance using supervised learning approaches," Energy, Elsevier, vol. 246(C).
    10. David Pérez Granados & Mauricio Alberto Ortega Ruiz & Joel Moreira Acosta & Sergio Arturo Gama Lara & Roberto Adrián González Domínguez & Pedro Jacinto Páramo Kañetas, 2023. "A Wind Turbine Vibration Monitoring System for Predictive Maintenance Based on Machine Learning Methods Developed under Safely Controlled Laboratory Conditions," Energies, MDPI, vol. 16(5), pages 1-17, February.
    11. Wang, Zhi & Zhou, Huaichun & Peng, Xianyong & Cao, Shengxian & Tang, Zhenhao & Li, Kuangyu & Fan, Siyuan & Xue, Wenyuan & Yao, Guojia & Xu, Shiming, 2024. "A predictive model with time-varying delays employing channel equalization convolutional neural network for NOx emissions in flexible power generation," Energy, Elsevier, vol. 306(C).
    12. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    13. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    14. Hu, Deng & Wang, Hechun & Yang, Chuanlei & Wang, Binbin & Duan, Baoyin & Wang, Yinyan & Li, Hucai, 2024. "Construction of digital twin model of engine in-cylinder combustion based on data-driven," Energy, Elsevier, vol. 293(C).
    15. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    16. Li, Lele & Zhang, Weihao & Li, Ya & Zhang, Ruifeng & Liu, Zongwang & Wang, Yufan & Mu, Yumo, 2024. "A non-parametric high-resolution prediction method for turbine blade profile loss based on deep learning," Energy, Elsevier, vol. 288(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:6:p:264-:d:1680991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.