IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p3013-3033d48354.html
   My bibliography  Save this article

3D CFD Analysis of a Vertical Axis Wind Turbine

Author

Listed:
  • Andrea Alaimo

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

  • Antonio Esposito

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

  • Antonio Messineo

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

  • Calogero Orlando

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

  • Davide Tumino

    (Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy)

Abstract

To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD) is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS) equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

Suggested Citation

  • Andrea Alaimo & Antonio Esposito & Antonio Messineo & Calogero Orlando & Davide Tumino, 2015. "3D CFD Analysis of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(4), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3013-3033:d:48354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/3013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/3013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Alaimo & Antonio Esposito & Alberto Milazzo & Calogero Orlando & Flavio Trentacosti, 2013. "Slotted Blades Savonius Wind Turbine Analysis by CFD," Energies, MDPI, vol. 6(12), pages 1-17, December.
    2. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    3. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    4. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    5. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balduzzi, Francesco & Drofelnik, Jernej & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo & Campobasso, Michele Sergio, 2017. "Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment," Energy, Elsevier, vol. 128(C), pages 550-563.
    2. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    3. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    4. Ihor Shchur & Volodymyr Klymko & Shengbai Xie & David Schmidt, 2023. "Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation," Energies, MDPI, vol. 16(11), pages 1-24, June.
    5. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Mauro De Marchis & Barbara Milici & Roberto Volpe & Antonio Messineo, 2016. "Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis," Energies, MDPI, vol. 9(11), pages 1-15, October.
    7. Mohammed Baqer Zaki Yahya Al-quraishi & Shamsul Sarip & Hazilah Mad Kaidi & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki, 2022. "A CFD Analysis for Novel Close-Ended Deflector for Vertical Water Turbines," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    8. Qian Cheng & Xiaolan Liu & Ho Seong Ji & Kyung Chun Kim & Bo Yang, 2017. "Aerodynamic Analysis of a Helical Vertical Axis Wind Turbine," Energies, MDPI, vol. 10(4), pages 1-17, April.
    9. Fang Feng & Guoqiang Tong & Yunfei Ma & Yan Li, 2021. "Numerical Simulation and Wind Tunnel Investigation on Static Characteristics of VAWT Rotor Starter with Lift-Drag Combined Structure," Energies, MDPI, vol. 14(19), pages 1-24, September.
    10. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    11. Mohammadreza Asadbeigi & Farzad Ghafoorian & Mehdi Mehrpooya & Sahel Chegini & Azad Jarrahian, 2023. "A 3D Study of the Darrieus Wind Turbine with Auxiliary Blades and Economic Analysis Based on an Optimal Design from a Parametric Investigation," Sustainability, MDPI, vol. 15(5), pages 1-31, March.
    12. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    13. Cameron Gerrie & Sheikh Zahidul Islam & Sean Gerrie & Naomi Turner & Taimoor Asim, 2023. "3D CFD Modelling of Performance of a Vertical Axis Turbine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    14. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    15. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    16. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    17. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments," Energy, Elsevier, vol. 141(C), pages 1113-1123.
    18. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Wenlong Tian & Zhaoyong Mao & Yukai Li, 2017. "Numerical Simulations of a VAWT in the Wake of a Moving Car," Energies, MDPI, vol. 10(4), pages 1-14, April.
    20. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    21. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    22. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    23. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.
    24. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    2. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    5. Shaaban, S. & Albatal, A. & Mohamed, M.H., 2018. "Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements," Renewable Energy, Elsevier, vol. 125(C), pages 87-99.
    6. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    7. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    8. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    9. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    10. Xu, He-Yong & Qiao, Chen-Liang & Yang, Hui-Qiang & Ye, Zheng-Yin, 2017. "Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees," Energy, Elsevier, vol. 118(C), pages 1090-1109.
    11. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    12. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    13. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    14. Asr, Mahdi Torabi & Nezhad, Erfan Zal & Mustapha, Faizal & Wiriadidjaja, Surjatin, 2016. "Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils," Energy, Elsevier, vol. 112(C), pages 528-537.
    15. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    16. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    17. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    18. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
    20. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:3013-3033:d:48354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.