IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2535-2557d35345.html
   My bibliography  Save this article

Energy-Efficient Power Allocation Using Probabilistic Interference Model for OFDM-Based Green Cognitive Radio Networks

Author

Listed:
  • Ashok Karmokar

    (Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street,M5B 2K3, Toronto, Canada)

  • Muhammad Naeem

    (Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street,M5B 2K3, Toronto, Canada
    Department of Electrical Engineering, COMSATS Institute of IT, Wah Campus, Wah, Pakistan)

  • Alagan Anpalagan

    (Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street,M5B 2K3, Toronto, Canada)

  • Muhammad Jaseemuddin

    (Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street,M5B 2K3, Toronto, Canada)

Abstract

We study the energy-efficient power allocation techniques for OFDM-based cognitive radio (CR) networks, where a CR transmitter is communicating with CR receivers on a channel borrowed from licensed primary users (PUs). Due to non-orthogonality of the transmitted signals in the adjacent bands, both the PU and the cognitive secondary user (SU) cause mutual-interference. We assume that the statistical channel state information between the cognitive transmitter and the primary receiver is known. The secondary transmitter maintains a specified statistical mutual-interference limits for all the PUs communicating in the adjacent channels. Our goal is to allocate subcarrier power for the SU so that the energy efficiency metric is optimized as well as the mutual-interference on all the active PU bands are below specified bounds. We show that the green power loading problem is a fractional programming problem. We use Charnes-Cooper transformation technique to obtain an equivalent concave optimization problem for what the solution can be readily obtained. We also propose iterative Dinkelbach method using parametric objective function for the fractional program. Numerical results are given to show the effect of different interference parameters, rate and power thresholds, and number of PUs.

Suggested Citation

  • Ashok Karmokar & Muhammad Naeem & Alagan Anpalagan & Muhammad Jaseemuddin, 2014. "Energy-Efficient Power Allocation Using Probabilistic Interference Model for OFDM-Based Green Cognitive Radio Networks," Energies, MDPI, vol. 7(4), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2535-2557:d:35345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihang Du & Ying Xu & Lei Xue & Lijia Wang & Fan Zhang, 2019. "An Energy-Efficient Cross-Layer Routing Protocol for Cognitive Radio Networks Using Apprenticeship Deep Reinforcement Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    2. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    3. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    4. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    5. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    6. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    7. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    8. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    9. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    10. Keshav Singh & Meng-Lin Ku & Sudip Biswas & Tharmalingam Ratnarajah, 2017. "Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper," Energies, MDPI, vol. 10(12), pages 1-13, November.
    11. Mehdi Nooshyar & Abdolrasoul Sakhaei Gharagezlou & Nima Imani & Elhameh Mikaeili & Mahdi Nangir, 2024. "Energy efficiency analysis for 5G application in massive MIMO systems by using lower bound inequality and SCAM method," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 85(3), pages 365-372, March.
    12. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    13. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    14. Hasuike, Takashi & Ishii, Hiroaki, 2009. "On flexible product-mix decision problems under randomness and fuzziness," Omega, Elsevier, vol. 37(4), pages 770-787, August.
    15. Welington Oliveira & Valentina Sessa & David Sossa, 2024. "Computing Critical Angles Between Two Convex Cones," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 866-898, May.
    16. R. Yamamoto & H. Konno, 2007. "An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 241-255, May.
    17. Hongcan Lin & David Saunders & Chengguo Weng, 2019. "Portfolio Optimization With Performance Ratios," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-38, August.
    18. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    19. Patrick Groenen & Bart-Jan Os & Jacqueline Meulman, 2000. "Optimal scaling by alternating length-constrained nonnegative least squares, with application to distance-based analysis," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 511-524, December.
    20. Tran Van Tung & To Truong An & Byung Moo Lee, 2022. "Joint Resource and Trajectory Optimization for Energy Efficiency Maximization in UAV-Based Networks," Mathematics, MDPI, vol. 10(20), pages 1-17, October.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2535-2557:d:35345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.