IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i1p117-127d22573.html
   My bibliography  Save this article

Analytic Modeling of Vehicle Fuel Consumption

Author

Listed:
  • Michael Ben-Chaim

    (Department of Mechanical Engineering and Mechatronics, Ariel University Center of Samaria, Ariel 40700, Israel)

  • Efraim Shmerling

    (Department of Computer Science and Mathematics, Ariel University Center of Samaria, Ariel 40700, Israel)

  • Alon Kuperman

    (Department of Electrical Engineering and Electronics, Ariel University Center of Samaria, Ariel 40700, Israel)

Abstract

An analytical method of evaluating vehicle fuel consumption under standard operating conditions is presented. In the proposed model, vehicle fuel consumption is separated into two different operating modes: cruising at constant speed and acceleration. In each of these modes fuel consumption is calculated based on the instantaneous engine efficiency, approximated using an analytical function rather than typically considered consumption map. The approximation is based on speed-power decoupling, employing two single dimension polynomials instead of a two-dimensional lookup table. The adequacy and accuracy of the model is verified using experimental calculations. Moreover, it is shown that the effect of various design parameters on vehicle fuel consumption can be studied utilizing the proposed model.

Suggested Citation

  • Michael Ben-Chaim & Efraim Shmerling & Alon Kuperman, 2013. "Analytic Modeling of Vehicle Fuel Consumption," Energies, MDPI, vol. 6(1), pages 1-11, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:117-127:d:22573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/1/117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/1/117/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakov Topić & Branimir Škugor & Joško Deur, 2022. "Neural Network-Based Prediction of Vehicle Fuel Consumption Based on Driving Cycle Data," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    2. Yushan Yang & Nuoya Gong & Keying Xie & Qingfei Liu, 2022. "Predicting Gasoline Vehicle Fuel Consumption in Energy and Environmental Impact Based on Machine Learning and Multidimensional Big Data," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    4. Aydin Azizi, 2018. "Computer-Based Analysis of the Stochastic Stability of Mechanical Structures Driven by White and Colored Noise," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    5. Farid Shahnavaz & Reza Akhavian, 2022. "Automated Estimation of Construction Equipment Emission Using Inertial Sensors and Machine Learning Models," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    6. Charyung Kim & Hyunwoo Lee & Yongsung Park & Cha-Lee Myung & Simsoo Park, 2016. "Study on the Criteria for the Determination of the Road Load Correlation for Automobiles and an Analysis of Key Factors," Energies, MDPI, vol. 9(8), pages 1-17, July.
    7. Riccardo Giusti & Daniele Manerba & Roberto Tadei, 2021. "Smart Steaming: A New Flexible Paradigm for Synchromodal Logistics," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    8. Landry Frank Ineza Havugimana & Bolan Liu & Fanshuo Liu & Junwei Zhang & Ben Li & Peng Wan, 2023. "Review of Artificial Intelligent Algorithms for Engine Performance, Control, and Diagnosis," Energies, MDPI, vol. 16(3), pages 1-25, January.
    9. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    10. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    11. Piotr Bera, 2019. "Development of Engine Efficiency Characteristic in Dynamic Working States," Energies, MDPI, vol. 12(15), pages 1-14, July.
    12. Kroyan, Yuri & Wojcieszyk, Michal & Kaario, Ossi & Larmi, Martti & Zenger, Kai, 2020. "Modeling the end-use performance of alternative fuels in light-duty vehicles," Energy, Elsevier, vol. 205(C).
    13. Tianming Gao & Vasilii Erokhin & Aleksandr Arskiy, 2019. "Dynamic Optimization of Fuel and Logistics Costs as a Tool in Pursuing Economic Sustainability of a Farm," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    14. Guilherme Medeiros Soares de Andrade & Fernando Wesley Cavalcanti de Araújo & Maurício Pereira Magalhães de Novaes Santos & Fabio Santana Magnani, 2020. "Standardized Comparison of 40 Local Driving Cycles: Energy and Kinematics," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:117-127:d:22573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.