IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i6p1998-2016d18445.html
   My bibliography  Save this article

Two LQRI based Blade Pitch Controls for Wind Turbines

Author

Listed:
  • Sungsu Park

    (Department of Aerospace Engineering, Sejong University, Seoul 143-737, Korea)

  • Yoonsu Nam

    (Department of Mechanical and Mechatronics Engineering, Kangwon National University, Kangwon 200-701, Korea)

Abstract

As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI), and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

Suggested Citation

  • Sungsu Park & Yoonsu Nam, 2012. "Two LQRI based Blade Pitch Controls for Wind Turbines," Energies, MDPI, vol. 5(6), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1998-2016:d:18445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/6/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/6/1998/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Shize & Tian, De & Wu, Xiaoxuan & Huang, Mingyue & Deng, Ying, 2022. "Wind turbine load reduction based on 2DoF robust individual pitch control," Renewable Energy, Elsevier, vol. 183(C), pages 28-40.
    2. Abhinandan Routray & Nitin Sivakumar & Sung-ho Hur & Deok-je Bang, 2023. "A Comparative Study of Optimal Individual Pitch Control Methods," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    3. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    4. Jongmin Cheon & Jinwook Kim & Joohoon Lee & Kichang Lee & Youngkiu Choi, 2019. "Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test," Energies, MDPI, vol. 12(10), pages 1-20, May.
    5. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    6. Xingqi Hu & Wen Tan & Guolian Hou, 2023. "PIDD2 Control of Large Wind Turbines’ Pitch Angle," Energies, MDPI, vol. 16(13), pages 1-22, July.
    7. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    8. Taesu Jeon & Insu Paek, 2021. "Design and Verification of the LQR Controller Based on Fuzzy Logic for Large Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-17, January.
    9. Kwansu Kim & Hyun-Gyu Kim & Yuan Song & Insu Paek, 2019. "Design and Simulation of an LQR-PI Control Algorithm for Medium Wind Turbine," Energies, MDPI, vol. 12(12), pages 1-18, June.
    10. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    11. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:1998-2016:d:18445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.