A Bidding Strategy for Power Suppliers Based on Multi-Agent Reinforcement Learning in Carbon–Electricity–Coal Coupling Market
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ren, Kezheng & Liu, Jun & Liu, Xinglei & Nie, Yongxin, 2023. "Reinforcement Learning-Based Bi-Level strategic bidding model of Gas-fired unit in integrated electricity and natural gas markets preventing market manipulation," Applied Energy, Elsevier, vol. 336(C).
- Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
- Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).
- Xu, Xuesong & Xu, Kai & Zeng, Ziyang & Tang, Jiale & He, Yuanxing & Shi, Guangze & Zhang, Tao, 2024. "Collaborative optimization of multi-energy multi-microgrid system: A hierarchical trust-region multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 375(C).
- Ren, Kezheng & Liu, Jun & Wu, Zeyang & Liu, Xinglei & Nie, Yongxin & Xu, Haitao, 2024. "A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters," Applied Energy, Elsevier, vol. 355(C).
- Wang, Yi & Yang, Zhifang & Yu, Juan & Liu, Junyong, 2023. "An optimization-based partial marginal pricing method to reduce excessive consumer payment in electricity markets," Applied Energy, Elsevier, vol. 352(C).
- Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
- Weng, Haoen & Hu, Yongli & Liang, Min & Xi, Jiayang & Yin, Baocai, 2025. "Optimizing bidding strategy in electricity market based on graph convolutional neural network and deep reinforcement learning," Applied Energy, Elsevier, vol. 380(C).
- Guo, Xiaopeng & Zhang, Xinyue & Zhang, Xingping, 2024. "Incentive-oriented power‑carbon emissions trading-tradable green certificate integrated market mechanisms using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 357(C).
More about this item
Keywords
carbon trading market; multi-market-coupling environment; decision collaborative optimization; multi-agent deep deterministic policy gradient; optimal bidding strategy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2388-:d:1650634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.