IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2224-d1643929.html
   My bibliography  Save this article

Dispatch for the Industrial Micro-Grid with an Integrated Photovoltaic-Gas-Manufacturing Facility System Considering Carbon Emissions and Operation Costs

Author

Listed:
  • Qian Wu

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

  • Qiankun Song

    (School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

In this paper, the dispatch for the industrial micro-grid with an integrated photovoltaic-gas-manufacturing facility system considering carbon emissions and operation costs is investigated. Two kinds of energy, electricity and natural gas, are contained in the integer energy system, in which the electricity mainly comes from the PV panels and the utility electricity network, and the natural gas mainly comes from the utility gas network. In addition, electricity and natural gas can be converted into each other. Four kinds of loads, electricity load, gas load, heating load and cooling load, need to be satisfied, in which the electricity load can be divided into fixed load and flexible load. The flexible load comes from the scheduling for manufacturing facilities, and the scheduling of manufacturing facilities is modeled as a kind of deferable load to be integrated into the energy system. Moreover, daily operation costs and carbon emissions are considered in the decision, and the deviation preference strategy is used to solve this multi-objective optimization problem. Finally, a case study with a lithium-ion battery assembly system is proposed. According to the results, it can be found that the proposed model can help managers realize effective scheduling of the industrial micro-grid.

Suggested Citation

  • Qian Wu & Qiankun Song, 2025. "Dispatch for the Industrial Micro-Grid with an Integrated Photovoltaic-Gas-Manufacturing Facility System Considering Carbon Emissions and Operation Costs," Energies, MDPI, vol. 18(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2224-:d:1643929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Jie & Li, Conghui & Ma, Kai & Liu, Hongru & Guo, Shiliang, 2024. "Multi-energy pricing strategy for port integrated energy systems based on contract mechanism," Energy, Elsevier, vol. 290(C).
    2. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
    3. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    4. Pengfei Duan & Mengdan Feng & Bingxu Zhao & Qingwen Xue & Kang Li & Jinglei Chen, 2024. "Operational Optimization of Regional Integrated Energy Systems with Heat Pumps and Hydrogen Renewable Energy under Integrated Demand Response," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    5. Yu, Mengmeng & Lu, Renzhi & Hong, Seung Ho, 2016. "A real-time decision model for industrial load management in a smart grid," Applied Energy, Elsevier, vol. 183(C), pages 1488-1497.
    6. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    7. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    2. Dinh, Huy Truong & Lee, Kyu-haeng & Kim, Daehee, 2022. "Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization," Applied Energy, Elsevier, vol. 321(C).
    3. Lu, Renzhi & Bai, Ruichang & Huang, Yuan & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2021. "Data-driven real-time price-based demand response for industrial facilities energy management," Applied Energy, Elsevier, vol. 283(C).
    4. Leherbauer, Dominik & Schulz, Julia & Egyed, Alexander & Hehenberger, Peter, 2025. "Demand-side management in less energy-intensive industries: A systematic mapping study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    5. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    6. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    7. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    8. Woltmann, Stefan & Kittel, Julia, 2022. "Development and implementation of multi-agent systems for demand response aggregators in an industrial context," Applied Energy, Elsevier, vol. 314(C).
    9. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    10. He, Wangli & Li, Chengyuan & Cai, Chenhao & Qing, Xiangyun & Du, Wenli, 2024. "Suppressing active power fluctuations at PCC in grid-connection microgrids via multiple BESSs: A collaborative multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 373(C).
    11. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    12. Chao-Chung Hsu & Bi-Hai Jiang & Chun-Cheng Lin, 2023. "A Survey on Recent Applications of Artificial Intelligence and Optimization for Smart Grids in Smart Manufacturing," Energies, MDPI, vol. 16(22), pages 1-15, November.
    13. Shi, Jiatong & Guo, Yangying & Wang, Sen & Yu, Xinyi & Jiang, Qianyu & Xu, Weidong & Yan, Yamin & Chen, Yujie & Zhang, Hongyu & Wang, Bohong, 2024. "An optimisation method for planning and operating nearshore island power and natural gas energy systems," Energy, Elsevier, vol. 308(C).
    14. Shi, Yueyue & Liu, Yongqi & Zhou, Yuqi & Shi, Junrui & Qi, Xiaoni & Mao, Mingming, 2023. "Study in mitigation of lean methane and stable heat recovery via embedded heat exchanger tubes in the regenerative monolith bed," Renewable Energy, Elsevier, vol. 218(C).
    15. Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
    16. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    17. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    18. Wang, Junya & Zhao, Qinfang & Ning, Ping & Wen, Shikun, 2024. "Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry," Energy, Elsevier, vol. 290(C).
    19. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    20. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2224-:d:1643929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.