IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2004-d1634090.html
   My bibliography  Save this article

Enhancing Performance of PEM Fuel Cell Powering SRM System Using Metaheuristic Optimization

Author

Listed:
  • Mohamed A. El-Hameed

    (Energy and Sustainable Engineering Department, College of Engineering, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman)

  • Mahfouz Saeed

    (Energy and Sustainable Engineering Department, College of Engineering, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman)

  • Adnan Kabbani

    (Electrical Engineering and Computer Science Department, College of Engineering, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman)

  • Enas Abd El-Hay

    (Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

This paper introduces an effective method to improve the performance of a proton exchange membrane fuel cell (PEMFC) system powering a switched reluctance motor (SRM). Problems arise in this system due to the inherent torque and current ripples of the SRM, which result from its saliency and nonlinear magnetic characteristics. Another cause for these ripples is the unsmoothed DC voltage applied to the SRM caused by the switching operations of the DC-DC converter. These ripples are reflected in the PEMFC, leading to more losses and a reduced lifespan. Key parameters that can help mitigate torque and current ripples include the appropriate turn-on and turn-off angles of the SRM phases, as well as the DC-link voltage controller gains. This paper investigates three objectives to compare their effects on the PEMFC system: the SRM torque ripple factor, the DC-link voltage ripple factor, and the PEMFC current ripple factor. These objectives are optimized individually using the single-objective particle swarm and stochastic fractal search algorithms. Additionally, the multi-objective Lichtenberg and multi-objective Dragonfly algorithms are applied to optimize the three objectives concurrently. The optimal decision parameters are obtained from the Pareto front solution using the technique of the order of preference by similarity to the ideal solution method. The final results demonstrate that significant enhancement in the PEMFC current ripples and DC-link voltage ripples can be achieved by appropriately selecting the decision parameters using any proposed objective.

Suggested Citation

  • Mohamed A. El-Hameed & Mahfouz Saeed & Adnan Kabbani & Enas Abd El-Hay, 2025. "Enhancing Performance of PEM Fuel Cell Powering SRM System Using Metaheuristic Optimization," Energies, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2004-:d:1634090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    2. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    2. Onur Yuksel & Eduardo Blanco-Davis & Andrew Spiteri & David Hitchmough & Viknash Shagar & Maria Carmela Di Piazza & Marcello Pucci & Nikolaos Tsoulakos & Milad Armin & Jin Wang, 2025. "Optimising the Design of a Hybrid Fuel Cell/Battery and Waste Heat Recovery System for Retrofitting Ship Power Generation," Energies, MDPI, vol. 18(2), pages 1-40, January.
    3. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    4. Sun, Li & Walker, Paul & Feng, Kaiwu & Zhang, Nong, 2018. "Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter," Energy, Elsevier, vol. 142(C), pages 436-446.
    5. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    6. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    7. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    8. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    10. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    11. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    12. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    13. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    14. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    15. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    17. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    18. Abdel-Monem, Mohamed & Trad, Khiem & Omar, Noshin & Hegazy, Omar & Van den Bossche, Peter & Van Mierlo, Joeri, 2017. "Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries," Energy, Elsevier, vol. 120(C), pages 179-191.
    19. Lo, An-Ya & Jheng, Yu & Huang, Tsao-Cheng & Tseng, Chuan-Ming, 2015. "Study on RuO2/CMK-3/CNTs composites for high power and high energy density supercapacitor," Applied Energy, Elsevier, vol. 153(C), pages 15-21.
    20. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2004-:d:1634090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.