IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p620-d1579581.html
   My bibliography  Save this article

Development of an AI-Based Image Analysis Model for Verifying Partial Defects in Nuclear Fuel Assemblies

Author

Listed:
  • Seulah Kim

    (Division of Data Science, Yonsei University, Wonju 26493, Republic of Korea)

  • Dayun Park

    (Division of Data Science, Yonsei University, Wonju 26493, Republic of Korea)

  • Hyung-Joo Choi

    (Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Republic of Korea)

  • Chulhee Min

    (Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Republic of Korea)

  • Jaejoon Ahn

    (Division of Data Science, Yonsei University, Wonju 26493, Republic of Korea)

Abstract

The increase in the number of nuclear power plants utilized for achieving carbon neutrality has emphasized the importance of managing high-radiation spent nuclear fuel (SNF). Traditional inspection methods, such as gamma emission tomography (GET), have limitations in terms of detecting partial defects within SNF assemblies. This study aims to increase the accuracy of SNF defect detection by optimizing artificial intelligence (AI)-based classification algorithms. By using emission tomography image data acquired from 3 × 3 nuclear fuel assemblies, we compare the performance of neural network models (AlexNet, ResNet, and the squeeze-and-excitation network (SENet)) and tree-based ensemble models (extreme gradient boosting (XGBoost), random forest model, and light gradient boosting machine (LightGBM)). Our results show that the neural network models, particularly ResNet and SENet, achieve superior classification accuracy with limited training data. SENet in particular demonstrates high performance with fewer samples, indicating its defect detection effectiveness in scenarios with minimal data. Tree-based models such as XGBoost and LightGBM also exhibit high accuracy but are slightly less effective than the neural networks are. In conclusion, AI-based classification systems, especially those utilizing advanced neural networks, can significantly improve the inspection and management processes related to SNFs, ensuring safety and compliance in nuclear energy operations. Future work should explore these methodologies for larger configurations beyond 3 × 3 assemblies to further validate their effectiveness.

Suggested Citation

  • Seulah Kim & Dayun Park & Hyung-Joo Choi & Chulhee Min & Jaejoon Ahn, 2025. "Development of an AI-Based Image Analysis Model for Verifying Partial Defects in Nuclear Fuel Assemblies," Energies, MDPI, vol. 18(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:620-:d:1579581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Karim Zkik & Anass Sebbar & Oumaima Fadi & Sachin Kamble & Amine Belhadi, 2024. "Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach," Electronic Commerce Research, Springer, vol. 24(1), pages 497-533, March.
    10. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    12. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    13. Jonas Botz & Diego Valderrama & Jannis Guski & Holger Fröhlich, 2024. "A dynamic ensemble model for short-term forecasting in pandemic situations," PLOS Global Public Health, Public Library of Science, vol. 4(8), pages 1-18, August.
    14. Daniel Boller & Michael Lechner & Gabriel Okasa, 2025. "The effect of sport in online dating: evidence from causal machine learning," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    15. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    16. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    17. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    18. Cini, Federico & Ferrari, Annalisa, 2025. "Towards the estimation of ESG ratings: A machine learning approach using balance sheet ratios," Research in International Business and Finance, Elsevier, vol. 73(PB).
    19. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    20. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:620-:d:1579581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.