IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4803-d1745787.html
   My bibliography  Save this article

Assessing Critical Edges in Cyber-Physical Power Systems Using Complex Network Theory: A Real-World Case Study

Author

Listed:
  • Mehdi Doostinia

    (Electrical Engineering, Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

  • Davide Falabretti

    (Electrical Engineering, Department of Energy, Politecnico di Milano, 20156 Milan, Italy)

Abstract

Cyber-physical power systems (CPPSs) are increasingly vital to the reliable and resilient operation of modern electricity infrastructure. Within these systems, both physical components—such as power substations and lines—and cyber components—such as communication links, mobile base stations, and controllers—are interdependent, making the identification of critical elements essential for improving system robustness. While prior research has largely focused on node-level analysis, this study addresses the underexplored challenge of identifying critical edges using tools from complex network theory. We evaluate edge importance through edge betweenness centrality (EBC) and edge removal analysis (ERA) across a real-world CPPS located in Northeastern Italy. Three network scenarios are analyzed: a directed power network, an undirected power network, and an undirected cyber network. Nearly 10 percent of the important edges, based on the EBC and ERA methods, are discussed. A Pearson correlation is considered to find the correlation between the results of the two methods. The findings can support distribution system operators in prioritizing infrastructure hardening and enhancing resilience against both physical failures and cyber threats.

Suggested Citation

  • Mehdi Doostinia & Davide Falabretti, 2025. "Assessing Critical Edges in Cyber-Physical Power Systems Using Complex Network Theory: A Real-World Case Study," Energies, MDPI, vol. 18(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4803-:d:1745787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud Saleh & Yusef Esa & Ahmed Mohamed, 2018. "Applications of Complex Network Analysis in Electric Power Systems," Energies, MDPI, vol. 11(6), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Doostinia & Davide Falabretti & Giacomo Verticale & Sadegh Bolouki, 2025. "Critical Node Identification for Cyber–Physical Power Distribution Systems Based on Complex Network Theory: A Real Case Study," Energies, MDPI, vol. 18(11), pages 1-26, June.
    2. Li, Jian & Yang, Zhao & He, Hongxia & Guo, Changzhen & Chen, Yubo & Zhang, Yong, 2024. "Risk causation analysis and prevention strategy of working fluid systems based on accident data and complex network theory," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    3. Chen, Wenhao & Li, Jichao & Jiang, Jiang & Chen, Gang, 2022. "Weighted interdependent network disintegration strategy based on Q-learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    4. Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    5. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    6. Jung, Hohyun & Phoa, Frederick Kin Hing, 2021. "On the effects of capability and popularity on network dynamics with applications to YouTube and Twitch networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    7. Diego Francisco Larios & Enrique Personal & Antonio Parejo & Sebastián García & Antonio García & Carlos Leon, 2020. "Operational Simulation Environment for SCADA Integration of Renewable Resources," Energies, MDPI, vol. 13(6), pages 1-37, March.
    8. Tio, Adonis E. & Hill, David J. & Ma, Jin, 2020. "Can graph properties determine future grid adequacy for power injection diversity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Cailian Gu & Yibo Wang & Weisheng Wang & Yang Gao, 2023. "Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access," Energies, MDPI, vol. 16(7), pages 1-15, March.
    10. Zheng, Xiaoyuan & Kang, Yu & Li, Hongyi & Li, Jitao, 2023. "Multiple description encoding-decoding-based resilient filtering for complex networks under the round-Robin protocol," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    11. Forsberg, Samuel & Thomas, Karin & Bergkvist, Mikael, 2023. "Power grid vulnerability analysis using complex network theory: A topological study of the Nordic transmission grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    12. Mahmoud Saleh & Yusef Esa & Mohamed El Hariri & Ahmed Mohamed, 2019. "Impact of Information and Communication Technology Limitations on Microgrid Operation," Energies, MDPI, vol. 12(15), pages 1-24, July.
    13. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2020. "Synchronization of nonlinearly coupled complex networks: Distributed impulsive method," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    14. Li, Junjun & Yu, Anqi & Xu, Bowei, 2022. "Risk propagation and evolution analysis of multi-level handlings at automated terminals based on double-layer dynamic network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    15. Jaka Marguč & Mitja Truntič & Miran Rodič & Miro Milanovič, 2019. "FPGA Based Real-Time Emulation System for Power Electronics Converters," Energies, MDPI, vol. 12(6), pages 1-23, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4803-:d:1745787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.