IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4699-d1741942.html
   My bibliography  Save this article

A Thermo-Mechanical Coupled Gradient Damage Model for Heterogeneous Rocks Based on the Weibull Distribution

Author

Listed:
  • Juan Jin

    (Key Laboratory of Oil & Gas Production, CNPC, Beijing 100083, China
    Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
    National Energy Tight Oil and Gas R&D Center, Beijing 100083, China)

  • Ying Zhou

    (Liaohe Oilfield, PetroChina, Panjin 124010, China)

  • Hua Long

    (Liaohe Oilfield, PetroChina, Panjin 124010, China)

  • Shijun Chen

    (National Energy Tight Oil and Gas R&D Center, Beijing 100083, China
    School of Engineering Science, University of Science and Technology of China, Hefei 230027, China)

  • Hanwei Huang

    (National Energy Tight Oil and Gas R&D Center, Beijing 100083, China
    School of Engineering Science, University of Science and Technology of China, Hefei 230027, China)

  • Jiandong Liu

    (Key Laboratory of Oil & Gas Production, CNPC, Beijing 100083, China
    Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China)

  • Wei Cheng

    (Key Laboratory of Oil & Gas Production, CNPC, Beijing 100083, China
    Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
    National Energy Tight Oil and Gas R&D Center, Beijing 100083, China)

Abstract

This study develops a thermo-mechanical damage (TMD) model for predicting damage evolution in heterogeneous rock materials after heat treatment. The TMD model employs a Weibull distribution to characterize the spatial heterogeneity of the mechanical properties of rock materials and develops a framework that incorporates thermal effects into a nonlocal gradient damage model, thereby overcoming the mesh dependency issue inherent in homogeneous local damage models. The model is validated by numerical simulations of a notched cruciform specimen subjected to combined mechanical and thermal loading, confirming its capability in thermo-mechanical coupled scenarios. Sensitivity analysis shows increased material heterogeneity promotes localized, X-shaped shear-dominated failure patterns, while lower heterogeneity produces more diffuse, network-like damage distributions. Furthermore, the results demonstrate that thermal loading induces micro-damage that progressively spreads throughout the specimen, resulting in a significant reduction in both overall stiffness and critical strength; this effect becomes increasingly pronounced at higher heating temperatures. These findings demonstrate the model’s ability to predict the mechanical behavior of heterogeneous rock materials under thermal loading, offering valuable insights for safety assessments in high-temperature geotechnical engineering applications.

Suggested Citation

  • Juan Jin & Ying Zhou & Hua Long & Shijun Chen & Hanwei Huang & Jiandong Liu & Wei Cheng, 2025. "A Thermo-Mechanical Coupled Gradient Damage Model for Heterogeneous Rocks Based on the Weibull Distribution," Energies, MDPI, vol. 18(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4699-:d:1741942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xiuxi & Zhou, Huairong & Wang, Yajun & Qian, Yu & Yang, Siyu, 2015. "Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier," Energy, Elsevier, vol. 87(C), pages 605-614.
    2. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    2. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
    3. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    4. Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
    5. Kang, Zhiqin & Jiang, Xing & Wang, Lei & Yang, Dong & Ma, Yulin & Zhao, Yangsheng, 2023. "Comparative investigation of in situ hydraulic fracturing and high-temperature steam fracturing tests for meter-scale oil shale," Energy, Elsevier, vol. 281(C).
    6. Wang, Qingqiang & Hou, Jili & Wei, Xing & Jin, Nan & Ma, Yue & Li, Shuyuan & Zhao, Yuchao, 2022. "Advanced exergoenvironmental analysis of the oil shale retorting process with SJ-type rectangular retort," Energy, Elsevier, vol. 260(C).
    7. Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
    8. Liu, Qiqi & Liu, Chuang & Ma, Jiayu & Liu, Zhenyi & Sun, Lulu, 2024. "Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale," Energy, Elsevier, vol. 294(C).
    9. Jiang, Haiyan & Liu, Shuai & Wang, Jiao & You, Yuan & Yuan, Shibao, 2023. "Study on evolution mechanism of the pyrolysis of chang 7 oil shale from Ordos basin in China," Energy, Elsevier, vol. 272(C).
    10. Zhou, Huairong & Yang, Siyu & Xiao, Honghua & Yang, Qingchun & Qian, Yu & Gao, Li, 2016. "Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes," Energy, Elsevier, vol. 109(C), pages 201-210.
    11. Guoping Li & Juan Jin & Weixi Chen & Minghui Zhao & Jiandong Liu & Bo Fang & Tingfu Ye, 2025. "A Thermo-Hydro-Mechanical Damage Coupling Model for Stability Analysis During the In Situ Conversion Process," Energies, MDPI, vol. 18(6), pages 1-23, March.
    12. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    13. Yang, Qinchuan & Guo, Wei & Xu, Shaotao & Zhu, Chaofan, 2023. "The autothermic pyrolysis in-situ conversion process for oil shale recovery: Effect of gas injection parameters," Energy, Elsevier, vol. 283(C).
    14. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    15. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    16. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    17. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    18. Wang, Chao & Liu, Bo & Mohammadi, Mohammad-Reza & Fu, Li & Fattahi, Elham & Motra, Hem Bahadur & Hazra, Bodhisatwa & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2024. "Integrating experimental study and intelligent modeling of pore evolution in the Bakken during simulated thermal progression for CO2 storage goals," Applied Energy, Elsevier, vol. 359(C).
    19. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).
    20. Zhao, Qingyue & Li, Haiyong & Wang, Hongxing, 2024. "Simulation and optimization of DMC synthesis process based on conventional and advanced exergy analyses," Energy, Elsevier, vol. 311(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4699-:d:1741942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.