Author
Listed:
- Perez Yeptho
(Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments, Department d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)
- Antonio E. Saldaña-González
(Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments, Department d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)
- Mònica Aragüés-Peñalba
(Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments, Department d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)
- Sara Barja-Martínez
(Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments, Department d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain)
Abstract
Power flow analysis is essential for managing power systems, helping grid operators ensure reliability and efficiency. This paper explores the use of machine learning (ML) techniques as surrogates for computationally intensive power flow calculations to evaluate the effects of distributed energy resources, such as battery energy storage systems (BESSs), on grid performance. In this paper, a case study is presented where XGBoost (eXtreme Gradient Boosting) and Artificial Neural Networks (ANNs) are trained to simulate power flows in a medium-voltage grid in Norway. The impact of BESS units on line loading, transformer loading, and bus voltages is estimated across thousands of configurations, with results compared in terms of simulation time, error metrics, and robustness. In this paper it is proven that while ML models require considerable data and training time, they offer speed-up factors of up to 45×, depending on the predicted parameter. The proposed methodology can also be used to assess the impact of other grid-connected assets, such as small-scale solar plants and electric vehicle chargers, whose presence in distribution networks continues to grow.
Suggested Citation
Perez Yeptho & Antonio E. Saldaña-González & Mònica Aragüés-Peñalba & Sara Barja-Martínez, 2025.
"Evaluation of XGBoost and ANN as Surrogates for Power Flow Predictions with Dynamic Energy Storage Scenarios,"
Energies, MDPI, vol. 18(16), pages 1-19, August.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:16:p:4416-:d:1727598
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4416-:d:1727598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.