IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4302-d1723219.html
   My bibliography  Save this article

Study of the Thermal Performance of Oil-Cooled Electric Motor with Different Oil-Jet Ring Configurations

Author

Listed:
  • Hao Yang

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Fan Wu

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Jinhao Fu

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Junxiong Zeng

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Xiaojin Fu

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Guangtao Zhai

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Feng Zhang

    (College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China)

Abstract

This study investigates the thermal performance of an oil-jet-cooled permanent magnet synchronous motor (PMSM), with a particular focus on end-winding heat dissipation. A high-fidelity numerical model that preserves the full geometric complexity of the end-winding is developed and validated against experimental temperature data, achieving average deviations below 7%. To facilitate efficient parametric analysis, a simplified equivalent model is constructed by replacing the complex geometry with a thermally equivalent annular region characterized by calibrated radial conductivity. Based on this model, the effects of key spray ring parameters—including orifice diameter, number of nozzles, inlet oil temperature, and flow rate—are systematically evaluated. The results indicate that reducing the orifice diameter from 4 mm to 2 mm lowers the maximum winding temperature from 162 °C to 153 °C but increases the pressure drop from 205 Pa to 913 Pa. An optimal nozzle number of 12 decreases the peak winding temperature to 155 °C compared with 162 °C for 8 nozzles, while increasing the oil flow rate from 2 L/min to 6 L/min reduces the peak winding temperature from 162 °C to 142 °C. Furthermore, a non-uniform spray ring configuration decreases maximum stator, winding, spray ring, and shaft temperatures by 5.6–9.2% relative to the baseline, albeit with a pressure drop increase from 907 Pa to 1410 Pa. These findings provide quantitative guidance for optimizing oil-jet cooling designs for PMSMs under engineering constraints.

Suggested Citation

  • Hao Yang & Fan Wu & Jinhao Fu & Junxiong Zeng & Xiaojin Fu & Guangtao Zhai & Feng Zhang, 2025. "Study of the Thermal Performance of Oil-Cooled Electric Motor with Different Oil-Jet Ring Configurations," Energies, MDPI, vol. 18(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4302-:d:1723219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmytro Konovalov & Ignat Tolstorebrov & Trygve Magne Eikevik & Halina Kobalava & Mykola Radchenko & Armin Hafner & Andrii Radchenko, 2023. "Recent Developments in Cooling Systems and Cooling Management for Electric Motors," Energies, MDPI, vol. 16(19), pages 1-31, October.
    2. Ralf Johannes Keuter & Florian Niebuhr & Marius Nozinski & Eike Krüger & Stephan Kabelac & Bernd Ponick, 2023. "Design of a Direct-Liquid-Cooled Motor and Operation Strategy for the Cooling System," Energies, MDPI, vol. 16(14), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangyoon Lee & Sangook Jun & Jae-Sung Huh & Poomin Park & Byeung-Jun Lim, 2024. "Inclined Installation Effect on the Offset Strip Finned Heat Exchanger Designed for a Hybrid Electric Propulsion System in Electric Vertical Take-Off and Landing," Energies, MDPI, vol. 17(19), pages 1-17, October.
    2. Matthew Meier & Elias G. Strangas, 2025. "Cooling Systems for High-Speed Machines—Review and Design Considerations," Energies, MDPI, vol. 18(15), pages 1-29, July.
    3. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    4. Maciej Mazur & Wojciech Skarka & Maciej Kobielski & Damian Kądzielawa & Robert Kubica & Clemens Haas & Hubert Unterberger, 2024. "Heat Exchange Analysis of Brushless Direct Current Motors," Energies, MDPI, vol. 17(24), pages 1-20, December.
    5. Christian Bergfried & Samaneh Abdi Qezeljeh & Ilia V. Roisman & Herbert De Gersem & Jeanette Hussong & Yvonne Späck-Leigsnering, 2024. "Thermal Finite-Element Model of Electric Machine Cooled by Spray," Energies, MDPI, vol. 18(1), pages 1-16, December.
    6. Dmytro Konovalov & Ignat Tolstorebrov & Yuhiro Iwamoto & Halina Kobalava & Jacob Joseph Lamb & Trygve Magne Eikevik, 2024. "Optimizing Low-Temperature Three-Circuit Evaporative Cooling System for an Electric Motor by Using Refrigerants," Energies, MDPI, vol. 17(16), pages 1-28, August.
    7. Joohyung Kim & Yoonkwon Lee & Hyomin Jin & Seunguk Park & Sung-Ho Hwang, 2024. "Development of Shift Map for Electric Commercial Vehicle and Comparison Verification of Pneumatic 4-Speed AMT and 4-Speed Transmission with Synchronizer in Simulation," Energies, MDPI, vol. 17(5), pages 1-21, February.
    8. Dmytro Konovalov & Ignat Tolstorebrov & Halina Kobalava & Jacob Joseph Lamb & Trygve Magne Eikevik, 2023. "Experimental Investigation of a Low-Temperature Three-Circuit Cooling System for an Electric Motor under Varying Loads," Energies, MDPI, vol. 16(24), pages 1-27, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4302-:d:1723219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.