IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8019-d1298518.html
   My bibliography  Save this article

Experimental Investigation of a Low-Temperature Three-Circuit Cooling System for an Electric Motor under Varying Loads

Author

Listed:
  • Dmytro Konovalov

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1, 7034 Trondheim, Norway)

  • Ignat Tolstorebrov

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1, 7034 Trondheim, Norway)

  • Halina Kobalava

    (Kherson Educational-Scientific Institute, Heat Engineering Department, Admiral Makarov National, University of Shipbuilding, 44 Ushakov Av., 73003 Kherson, Ukraine)

  • Jacob Joseph Lamb

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1, 7034 Trondheim, Norway)

  • Trygve Magne Eikevik

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 1, 7034 Trondheim, Norway)

Abstract

This study investigates a low-temperature three-circuit cooling system for a 55 kW industrial electric motor. The cooling system provides an increase of the power-to-dimension ratio by 63%, together with an improvement in motor performance. The three-circuit cooling system includes water cooling of the housing and stator and air-cooling of the motor’s interior. The test results show that the motor efficiency was maintained in the range between 92.5 and 94.5%, with respect to the motor’s power. With power increases up to 90 kW, a winding temperature of 67 °C was observed during three hours of operation. This advancement is particularly valuable for vehicles, ships, and aircraft applications, where maximizing power within limited space is crucial. An analysis of the experimental data showed that the cooling system operates at an average efficiency of 79.2%, indicating that roughly 20% of heat was accumulated in the rotor. This leads to a gradual temperature rise, particularly in the rotor, posing a risk of overheating and failure during motor overloads above 90 kW. Enhancing the cooling efficiency within the motor’s interior can be achieved by incorporating extra heat exchangers, implementing evaporative heat transfer, and employing water-cooling circuits at lower temperatures. This, in turn, can boost the electric motor’s power-to-dimension ratio.

Suggested Citation

  • Dmytro Konovalov & Ignat Tolstorebrov & Halina Kobalava & Jacob Joseph Lamb & Trygve Magne Eikevik, 2023. "Experimental Investigation of a Low-Temperature Three-Circuit Cooling System for an Electric Motor under Varying Loads," Energies, MDPI, vol. 16(24), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8019-:d:1298518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmytro Konovalov & Ignat Tolstorebrov & Trygve Magne Eikevik & Halina Kobalava & Mykola Radchenko & Armin Hafner & Andrii Radchenko, 2023. "Recent Developments in Cooling Systems and Cooling Management for Electric Motors," Energies, MDPI, vol. 16(19), pages 1-31, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joohyung Kim & Yoonkwon Lee & Hyomin Jin & Seunguk Park & Sung-Ho Hwang, 2024. "Development of Shift Map for Electric Commercial Vehicle and Comparison Verification of Pneumatic 4-Speed AMT and 4-Speed Transmission with Synchronizer in Simulation," Energies, MDPI, vol. 17(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8019-:d:1298518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.