IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4299-d1723152.html
   My bibliography  Save this article

Multi-Objective Optimization of 12-Pole Radial Active Magnetic Bearings with Preference-Based MOEA/D Algorithm

Author

Listed:
  • Xueqing Li

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Xiaoyuan Wang

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Haoyu Shen

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

In this paper, the multi-objective optimization of the 12-pole radial active magnetic bearing (RAMB) is investigated. In the optimization of the RAMB, the decision-maker is more interested in the Pareto-optimal solutions in a certain region. This paper proposes a decomposition-based and preference-based multi-objective evolutionary algorithm (MOEA/D-Pref). The proposed MOEA/D-Pref not only allows the number of Pareto-optimal solutions to be more concentrated in the region of interest but also preserves solutions in other regions. These preserved solutions enable decision-makers to observe a more complete Pareto front, thus gaining more comprehensive insights. In this paper, a mathematical model of the 12-pole RAMB is established, and, with the help of this model and the proposed algorithm, the optimal design of the 12-pole RAMB is completed. The difference between the current stiffness coefficients of the optimized RAMB, calculated by the proposed algorithm and by the finite element method, is 2.3%. The difference between the displacement stiffness coefficient of the optimized RAMB as calculated by the proposed algorithm and by the finite element method is 3.9%. These differences, being less than 4%, are relatively low and verify the reliability of the mathematical model established.

Suggested Citation

  • Xueqing Li & Xiaoyuan Wang & Haoyu Shen, 2025. "Multi-Objective Optimization of 12-Pole Radial Active Magnetic Bearings with Preference-Based MOEA/D Algorithm," Energies, MDPI, vol. 18(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4299-:d:1723152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    2. Rui Zhang & Xinying Song & Zongze Cui & Wei Hao & Cong Xu & Liwei Song, 2023. "Distributed Modeling of Isolated Active Magnetic Bearings Considering Magnetic Leakage and Material Nonlinearity," Energies, MDPI, vol. 16(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.
    2. Zio, E. & Bazzo, R., 2011. "Level Diagrams analysis of Pareto Front for multiobjective system redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 569-580.
    3. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    4. Rodríguez, Beatriz & Molina, Julián & Pérez, Fátima & Caballero, Rafael, 2012. "Interactive design of personalised tourism routes," Tourism Management, Elsevier, vol. 33(4), pages 926-940.
    5. Carolina Almeida & Richard Gonçalves & Elizabeth Goldbarg & Marco Goldbarg & Myriam Delgado, 2012. "An experimental analysis of evolutionary heuristics for the biobjective traveling purchaser problem," Annals of Operations Research, Springer, vol. 199(1), pages 305-341, October.
    6. Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
    7. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    8. Zio, E. & Bazzo, R., 2011. "A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 210(3), pages 624-634, May.
    9. E. Filatovas & O. Kurasova & J. L. Redondo & J. Fernández, 2020. "A reference point-based evolutionary algorithm for approximating regions of interest in multiobjective problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 402-423, July.
    10. Angelo Aliano Filho & Antonio Carlos Moretti & Margarida Vaz Pato & Washington Alves Oliveira, 2021. "An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems," Annals of Operations Research, Springer, vol. 296(1), pages 35-69, January.
    11. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    12. Wang, Rui & Purshouse, Robin C. & Giagkiozis, Ioannis & Fleming, Peter J., 2015. "The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique," European Journal of Operational Research, Elsevier, vol. 243(2), pages 442-453.
    13. Fowler, John W. & Gel, Esma S. & Köksalan, Murat M. & Korhonen, Pekka & Marquis, Jon L. & Wallenius, Jyrki, 2010. "Interactive evolutionary multi-objective optimization for quasi-concave preference functions," European Journal of Operational Research, Elsevier, vol. 206(2), pages 417-425, October.
    14. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    15. Liefooghe, Arnaud & Jourdan, Laetitia & Talbi, El-Ghazali, 2011. "A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO," European Journal of Operational Research, Elsevier, vol. 209(2), pages 104-112, March.
    16. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    17. Ana B. Ruiz & Rubén Saborido & José D. Bermúdez & Mariano Luque & Enriqueta Vercher, 2020. "Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences," Journal of Global Optimization, Springer, vol. 76(2), pages 295-315, February.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4299-:d:1723152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.