IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4157-d1718254.html
   My bibliography  Save this article

Risk and Uncertainty in Geothermal Projects: Characteristics, Challenges and Application of the Novel Reverse Enthalpy Methodology

Author

Listed:
  • Roberto Gambini

    (Geological Engineering Network Srl., Via Costantino 4, 00145 Rome, Italy)

  • Dave W. Waters

    (Paetoro Consulting UK Ltd., Summerfield Road Loughton, Millbrook IG10 4JF, Essex, UK)

  • Franco Sansone

    (Geological Engineering Network Srl., Via Costantino 4, 00145 Rome, Italy)

  • Valerio Memmo

    (Geological Engineering Network Srl., Via Costantino 4, 00145 Rome, Italy)

Abstract

A reliable geothermal risk assessment methodology is key to any business decision. To be effective, it must be based on widely accepted principles, be easy to apply, be auditable, and produce consistent results. In this paper, we review the key characteristics of a geothermal project and propose a novel approach derived from risk and uncertainty definitions used in the hydrocarbon industry. According to the proposed methodology, the probability of success is assessed by estimating three different components. The first is the geological probability of success, which is the likelihood that the geological model on which the geothermal project is based is correct and that the key fundamental geological elements are present. The second, the temperature threshold, is defined as the probability that the fluid is above a certain reference value. Such a reference value is the one used to design the development. Such a component, therefore, depends on the end use of the geothermal resource. The third component is the commercial probability of success and estimates the chance of a project being commercially viable using the Reverse Enthalpy Methodology. Geothermal projects do not have a single parameter that represents their monetary value. Therefore, in order to estimate it, it is necessary to make an initial assumption that can be revisited later in an iterative manner. The proposed methodology works with either the capital expenditure of the geothermal facility (power plant or direct thermal use) or the drilling cost as the initial assumption. Varying the other parameter, it estimates the probability of having a net present value (NPV) higher than zero.

Suggested Citation

  • Roberto Gambini & Dave W. Waters & Franco Sansone & Valerio Memmo, 2025. "Risk and Uncertainty in Geothermal Projects: Characteristics, Challenges and Application of the Novel Reverse Enthalpy Methodology," Energies, MDPI, vol. 18(15), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4157-:d:1718254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thorsten Agemar & Josef Weber & Inga S. Moeck, 2018. "Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook," Energies, MDPI, vol. 11(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    2. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    3. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
    4. Christopher Simon Brown, 2023. "Revisiting the Deep Geothermal Potential of the Cheshire Basin, UK," Energies, MDPI, vol. 16(3), pages 1-19, January.
    5. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    6. Anna Wachowicz-Pyzik & Anna Sowiżdżał & Leszek Pająk & Paweł Ziółkowski & Janusz Badur, 2020. "Assessment of the Effective Variants Leading to Higher Efficiency for the Geothermal Doublet, Using Numerical Analysis‒Case Study from Poland (Szczecin Trough)," Energies, MDPI, vol. 13(9), pages 1-20, May.
    7. Guillem Piris & Ignasi Herms & Albert Griera & Montse Colomer & Georgina Arnó & Enrique Gomez-Rivas, 2021. "3DHIP-Calculator—A New Tool to Stochastically Assess Deep Geothermal Potential Using the Heat-In-Place Method from Voxel-Based 3D Geological Models," Energies, MDPI, vol. 14(21), pages 1-21, November.
    8. Maximilian Frick & Stefan Kranz & Ben Norden & David Bruhn & Sven Fuchs, 2022. "Geothermal Resources and ATES Potential of Mesozoic Reservoirs in the North German Basin," Energies, MDPI, vol. 15(6), pages 1-26, March.
    9. Weinand, Jann Michael & Kleinebrahm, Max & McKenna, Russell & Mainzer, Kai & Fichtner, Wolf, 2019. "Developing a combinatorial optimisation approach to design district heating networks based on deep geothermal energy," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Eyerer, S. & Schifflechner, C. & Hofbauer, S. & Bauer, W. & Wieland, C. & Spliethoff, H., 2020. "Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4157-:d:1718254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.