IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3516-d1694131.html
   My bibliography  Save this article

Exploring Long-Term Clean Energy Transition Pathways in Ghana Using an Open-Source Optimization Approach

Author

Listed:
  • Romain Akpahou

    (STEER Centre, Department of Geography, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
    Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi GH233, Ghana)

  • Jesse Essuman Johnson

    (Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi GH233, Ghana)

  • Erica Aboagye

    (Energy Commission of Ghana, Accra P.O. Box CT 3095, Ghana)

  • Fernando Plazas-Niño

    (STEER Centre, Department of Geography, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
    Industrial and Business Studies School, Universidad Industrial de Santander, Bucaramanga 680002, Colombia)

  • Mark Howells

    (STEER Centre, Department of Geography, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
    Centre for Environmental Policy, Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK)

  • Jairo Quirós-Tortós

    (STEER Centre, Department of Geography, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK)

Abstract

Access to clean and sustainable energy technologies is critical for all nations, particularly developing countries in Africa. Ghana has committed to ambitious greenhouse gas emission reduction targets, aiming for 10% and 20% variable renewable energy integration by 2030 and 2070, respectively. This study explores potential pathways for Ghana to achieve its renewable energy production targets amidst a growing energy demand. An open-source energy modelling tool was used to assess four scenarios accounting for current policies and additional alternatives to pursue energy transition goals. The scenarios include Business as Usual (BAU), Government Target (GT), Renewable Energy (REW), and Net Zero (NZ). The results indicate that total power generation and installed capacity would increase across all scenarios, with natural gas accounting for approximately 60% of total generation under the BAU scenario in 2070. Total electricity generation is projected to grow between 10 and 20 times due to different electrification levels. Greenhouse gas emission reduction is achievable with nuclear energy being critical to support renewables. Alternative pathways based on clean energy production may provide cost savings of around USD 11–14 billion compared to a Business as Usual case. The findings underscore the necessity of robust policies and regulatory frameworks to support this transition, providing insights applicable to other developing countries with similar energy profiles. This study proposes a unique contextualized open-source modelling framework for a data-constrained, lower–middle-income country, offering a replicable approach for similar contexts in Sub-Saharan Africa. Its novelty also extended towards contributing to the knowledge of energy system modelling, with nuclear energy playing a crucial role in meeting future demand and achieving the country’s objectives under the Paris Agreement.

Suggested Citation

  • Romain Akpahou & Jesse Essuman Johnson & Erica Aboagye & Fernando Plazas-Niño & Mark Howells & Jairo Quirós-Tortós, 2025. "Exploring Long-Term Clean Energy Transition Pathways in Ghana Using an Open-Source Optimization Approach," Energies, MDPI, vol. 18(13), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3516-:d:1694131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Milone & Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Maurizio Cirrincione & Ali Mohammadi, 2022. "An Economic Approach to Size of a Renewable Energy Mix in Small Islands," Energies, MDPI, vol. 15(6), pages 1-20, March.
    2. Kumar Biswajit Debnath & Monjur Mourshed, 2018. "Author Correction: Challenges and gaps for energy planning models in the developing-world context," Nature Energy, Nature, vol. 3(6), pages 528-528, June.
    3. Gyamfi, Samuel & Modjinou, Mawufemo & Djordjevic, Sinisa, 2015. "Improving electricity supply security in Ghana—The potential of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1035-1045.
    4. Jaime Cevallos-Sierra & Afonso Pinto Gonçalves & Carlos Santos Silva, 2024. "Using Urban Building Energy Models for the Development of Sustainable Island Energy Systems," Energies, MDPI, vol. 17(13), pages 1-14, June.
    5. Jacob Dalder & Gbemi Oluleye & Carla Cannone & Rudolf Yeganyan & Naomi Tan & Mark Howells, 2024. "Modelling Policy Pathways to Maximise Renewable Energy Growth and Investment in the Democratic Republic of the Congo Using OSeMOSYS (Open Source Energy Modelling System)," Energies, MDPI, vol. 17(2), pages 1-27, January.
    6. Henke, Hauke T.J. & Gardumi, Francesco & Howells, Mark, 2022. "The open source electricity Model Base for Europe - An engagement framework for open and transparent European energy modelling," Energy, Elsevier, vol. 239(PA).
    7. Kumar Biswajit Debnath & Monjur Mourshed, 2018. "Challenges and gaps for energy planning models in the developing-world context," Nature Energy, Nature, vol. 3(3), pages 172-184, March.
    8. Rady, Yassin Yehia & Rocco, Matteo V. & Serag-Eldin, M.A. & Colombo, Emanuela, 2018. "Modelling for power generation sector in Developing Countries: Case of Egypt," Energy, Elsevier, vol. 165(PB), pages 198-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiaqi & Tian, Guang & Chen, Xiangyu & Liu, Pei & Li, Zheng, 2023. "A chance-constrained programming approach to optimal planning of low-carbon transition of a regional energy system," Energy, Elsevier, vol. 278(PA).
    2. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    3. Fuchs, J.L. & Tesfamichael, M. & Clube, R. & Tomei, J., 2024. "How does energy modelling influence policymaking? Insights from low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    4. Boško Josimović & Dušan Todorović & Aleksandar Jovović & Božidar Manić, 2024. "Air pollution modeling to support strategic environmental assessment: case study—National Emission Reduction Plan for coal-fired thermal power plants in Serbia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 16249-16265, June.
    5. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    6. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    7. Li, Zheng & Du, Binglin & Petersen, Nils & Liu, Pei & Wirsum, Manfred, 2024. "Potential of hydrogen and thermal storage in the long-term transition of the power sector: A case study of China," Energy, Elsevier, vol. 307(C).
    8. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Xu, Guizhi, 2025. "Enhancing modular gravity energy storage plants: A hybrid strategy for optimal unit capacity configuration," Applied Energy, Elsevier, vol. 378(PA).
    9. Pablo E. Carvajal & Asami Miketa & Nadeem Goussous & Pauline Fulcheri, 2022. "Best Practice in Government Use and Development of Long-Term Energy Transition Scenarios," Energies, MDPI, vol. 15(6), pages 1-21, March.
    10. Stevanato, Nicolò & Fioriti, Davide & Ferrucci, Tommaso & Belloni, Luca & Rinaldi, Lorenzo & Poli, Davide & Colombo, Emanuela, 2025. "Data-driven analysis for the characterization of household appliance ownership and use in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    11. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    12. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    13. Seyid Abdellahi Ebnou Abdem & Jérôme Chenal & El Bachir Diop & Rida Azmi & Meriem Adraoui & Cédric Stéphane Tekouabou Koumetio, 2023. "Using Logistic Regression to Predict Access to Essential Services: Electricity and Internet in Nouakchott, Mauritania," Sustainability, MDPI, vol. 15(23), pages 1-28, November.
    14. Hofbauer, Leonhard & McDowall, Will & Pye, Steve, 2022. "Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Marta Daroń & Monika Górska, 2023. "Relationships between Selected Quality Tools and Energy Efficiency in Production Processes," Energies, MDPI, vol. 16(13), pages 1-20, June.
    16. Hampton, Harrison & Foley, Aoife, 2022. "A review of current analytical methods, modelling tools and development frameworks applicable for future retail electricity market design," Energy, Elsevier, vol. 260(C).
    17. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    19. Du, Binglin & Liu, Pei & Li, Zheng, 2023. "Coal power plants transition based on joint planning of power and central heating sectors: A case study of China," Energy, Elsevier, vol. 283(C).
    20. Gonzalez-Carreon, Karla M. & García Kerdan, Iván, 2025. "Optimising large-scale solar-based distributed energy generation systems in high-density urban areas: An integrated approach using geospatial and techno-economic modelling," Energy, Elsevier, vol. 327(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3516-:d:1694131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.