IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3474-d1692523.html
   My bibliography  Save this article

Increasing Efficiency of Energy Conversion Systems from Renewable Sources Using Voltage Source Inverters with Soft Switching of Transistors

Author

Listed:
  • Witold Mazgaj

    (Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 St., 31-155 Cracow, Poland)

  • Zbigniew Szular

    (Department of Electrical Engineering, Cracow University of Technology, Warszawska 24 St., 31-155 Cracow, Poland)

Abstract

This article presents proposals to increase the efficiencies of energy conversion systems from renewable sources using a soft-switching technique in three-phase voltage source inverters. The first part of this article briefly presents basic systems for generating energy from renewable sources. Special attention is paid to both photovoltaic and wind power plants. The next section describes the voltage source inverter with the soft-switching system of transistors, which is resistant to disturbances in the control systems of inverters. Laboratory tests on cooperation between the voltage source inverter and the AC grid are carried out for two cases, when energy is transmitted from the DC circuit to the AC grid and vice versa. In the final part, the efficiencies of energy conversion systems operating under the voltage source inverter with the soft-switching technique are compared with those of an inverter using hard switching of transistors. A comparison is made for energy conversion systems with a rated power of 100 kW and 1 MW.

Suggested Citation

  • Witold Mazgaj & Zbigniew Szular, 2025. "Increasing Efficiency of Energy Conversion Systems from Renewable Sources Using Voltage Source Inverters with Soft Switching of Transistors," Energies, MDPI, vol. 18(13), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3474-:d:1692523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hooman Ghaffarzadeh & Ali Mehrizi-Sani, 2020. "Review of Control Techniques for Wind Energy Systems," Energies, MDPI, vol. 13(24), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf K. Abdelaal & Mohamed A. El-Hameed, 2025. "Strengthening Low-Voltage Ride Through Competency of Doubly Fed Induction Generator Driven by Wind Turbine Using Super-Twisting Sliding Mode Control," Energies, MDPI, vol. 18(8), pages 1-18, April.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    3. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    4. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    5. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    6. Paweł Ligęza, 2021. "Basic, Advanced, and Sophisticated Approaches to the Current and Forecast Challenges of Wind Energy," Energies, MDPI, vol. 14(23), pages 1-10, December.
    7. Abdulrahman Alassi & Khaled Ahmed & Agustí Egea-Àlvarez & Omar Ellabban, 2021. "Innovative Energy Management System for MVDC Networks with Black-Start Capabilities," Energies, MDPI, vol. 14(8), pages 1-21, April.
    8. Peng, Xiaokang & Liu, Zicheng & Jiang, Dong, 2021. "A review of multiphase energy conversion in wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3474-:d:1692523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.