IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2920-d1670466.html
   My bibliography  Save this article

The Potential of Dolomite as a Heterogeneous Catalyst in Biodiesel Synthesis: A Review

Author

Listed:
  • Violeta Makarevičienė

    (Department of Environmenrt and Ecology, Vytautas Magnus University, Agriculture Akademy, 53361 Kaunas, Lithuania)

  • Ieva Gaidė

    (Department of Environmenrt and Ecology, Vytautas Magnus University, Agriculture Akademy, 53361 Kaunas, Lithuania)

  • Eglė Sendžikienė

    (Department of Environmenrt and Ecology, Vytautas Magnus University, Agriculture Akademy, 53361 Kaunas, Lithuania)

  • Milda Gumbytė

    (Department of Environmenrt and Ecology, Vytautas Magnus University, Agriculture Akademy, 53361 Kaunas, Lithuania)

Abstract

Biodiesel is obtained by transesterification of triglycerides using catalysts. The possibilities of using a natural catalyst—dolomite in the synthesis of biodiesel are explored in this article. The conditions for preparing dolomite are presented, with considerable emphasis placed on the dependence of the structural changes and activity of dolomite on the calcination conditions. The optimal conditions for the transesterification of triglycerides with methanol are discussed, along with the possibilities for dolomite regeneration and reuse. It has been established that the calcination temperature of dolomite ranges from 800 to 900 °C, and using it can produce biodiesel that meets standard requirements, but this requires a large excess of alcohol in the transesterification reaction medium. The main issues related to the use of dolomite are linked to increasing catalytic activity and the possibilities of regenerating and reusing it. Researchers have recently focused on this by studying the possibilities of modifying dolomite using physical and chemical processes. The findings are contradictory and further studies are necessary, the possibilities for reuse have also been insufficiently explored. It is appropriate to analyze the economic indicators of dolomite preparation, modification, and regeneration in comparison with the preparation of other catalysts, so that the use of this catalyst aligns with the principles of sustainable synthesis.

Suggested Citation

  • Violeta Makarevičienė & Ieva Gaidė & Eglė Sendžikienė & Milda Gumbytė, 2025. "The Potential of Dolomite as a Heterogeneous Catalyst in Biodiesel Synthesis: A Review," Energies, MDPI, vol. 18(11), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2920-:d:1670466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niu, Shengli & Zhang, Xiangyu & Ning, Yilin & Zhang, Yujiao & Qu, Tongxin & Hu, Xun & Gong, Zhiqiang & Lu, Chunmei, 2020. "Dolomite incorporated with cerium to enhance the stability in catalyzing transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 154(C), pages 107-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    2. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    3. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    5. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.
    6. Qu, Tongxin & Niu, Shengli & Gong, Zhiqiang & Han, Kuihua & Wang, Yongzheng & Lu, Chunmei, 2020. "Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: Optimized by response surface methodology," Renewable Energy, Elsevier, vol. 159(C), pages 873-884.
    7. Yu, Hewei & Sun, Jichao & Chen, Xiuxiu & Wang, Bing & Liang, Xiaohui & Gao, Mingjie & Si, Hongyu, 2023. "Synthesis of a novel acid-base bifunctional Zn/Ca–Zr catalyst for biodiesel application: Experimental and molecular simulation studies," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2920-:d:1670466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.