IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2910-d1670189.html
   My bibliography  Save this article

Dual Turbocharger and Synergistic Control Optimization for Low-Speed Marine Diesel Engines: Mitigating Black Smoke and Enhancing Maneuverability

Author

Listed:
  • Cheng Meng

    (Marine Design & Research Institute of China, Shanghai 200011, China)

  • Kaiyuan Chen

    (Marine Design & Research Institute of China, Shanghai 200011, China)

  • Tianyu Chen

    (Marine Design & Research Institute of China, Shanghai 200011, China)

  • Jianfeng Ju

    (Marine Design & Research Institute of China, Shanghai 200011, China)

Abstract

Marine diesel engines face persistent challenges in balancing transient black smoke emissions and maneuverability under low-speed conditions due to inherent limitations of single turbocharger systems, such as high inertia and delayed intake response, compounded by control strategies prioritizing steady-state efficiency. To address this gap, this study proposes a dual -turbocharger dynamic matching framework integrated with a speed–pitch synergistic control strategy—the first mechanical-control co-design solution for transient emission suppression. By establishing a λ-opacity correlation model and a multi-physics ship–engine–propeller simulation platform, we demonstrate that the Type-C dual turbocharger reduces rotational inertia by 80%, shortens intake pressure buildup time to 25.8 s (54.7% faster than single turbochargers), and eliminates high-risk black smoke regions (maintaining λ > 1.5). The optimized system reduces the fuel consumption rate by 12.9 g·(kW·h) −1 under extreme loading conditions and decreases the duration of high-risk zones by 74.4–100%. This study provides theoretical and practical support for resolving the trade-off between transient emissions and maneuverability in marine power systems through synergistic innovations in mechanical design and control strategies.

Suggested Citation

  • Cheng Meng & Kaiyuan Chen & Tianyu Chen & Jianfeng Ju, 2025. "Dual Turbocharger and Synergistic Control Optimization for Low-Speed Marine Diesel Engines: Mitigating Black Smoke and Enhancing Maneuverability," Energies, MDPI, vol. 18(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2910-:d:1670189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hunicz, Jacek & Mikulski, Maciej & Koszałka, Grzegorz & Ignaciuk, Piotr, 2020. "Detailed analysis of combustion stability in a spark-assisted compression ignition engine under nearly stoichiometric and heavy EGR conditions," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yao & Que, Jinhao & Xia, Yu & Li, Xingqi & Jiang, Qingli & Feng, Liyan, 2024. "A comparative study of the effects of EGR on combustion and emission characteristics of port fuel injection and late direct injection in hydrogen internal combustion engine," Applied Energy, Elsevier, vol. 375(C).
    2. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    3. Xinyan Wang & Hua Zhao, 2022. "Modelling Study of Cycle-To-Cycle Variations (CCV) in Spark Ignition (SI)-Controlled Auto-Ignition (CAI) Hybrid Combustion Engine by Using Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulat," Energies, MDPI, vol. 15(12), pages 1-21, June.
    4. Zhang, Hao & Lei, Nuo & Liu, Shang & Fan, Qinhao & Wang, Zhi, 2023. "Data-driven predictive energy consumption minimization strategy for connected plug-in hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    5. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    6. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    7. Alfredas Rimkus & Edward Kozłowski & Tadas Vipartas & Saugirdas Pukalskas & Piotr Wiśniowski & Jonas Matijošius, 2025. "Emission Characteristics of Hydrogen-Enriched Gasoline Under Dynamic Driving Conditions," Energies, MDPI, vol. 18(5), pages 1-22, February.
    8. Koszalka, Grzegorz & Hunicz, Jacek, 2021. "Comparative study of energy losses related to the ring pack operation in homogeneous charge compression ignition and spark ignition combustion," Energy, Elsevier, vol. 235(C).
    9. Donatas Kriaučiūnas & Tadas Žvirblis & Kristina Kilikevičienė & Artūras Kilikevičius & Jonas Matijošius & Alfredas Rimkus & Darius Vainorius, 2021. "Impact of Simulated Biogas Compositions (CH 4 and CO 2 ) on Vibration, Sound Pressure and Performance of a Spark Ignition Engine," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Wang, Yaodong & Su, Yan & Li, Xiaoping & Wang, Yongzhen & Yang, Tong & Wang, Bo & Sun, Yao, 2024. "Experimental study for the effect of spark ignition on methanol/PODE dual fuel combustion under medium and low loads," Energy, Elsevier, vol. 301(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2910-:d:1670189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.