IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2739-d1663864.html
   My bibliography  Save this article

The Development of a MATLAB/Simulink-SCADA/EMS-Integrated Framework for Microgrid Pre-Validation

Author

Listed:
  • Seonghyeon Kim

    (School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Young-Jin Kim

    (Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea)

  • Sungyun Choi

    (School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea)

Abstract

To validate microgrid systems, precise simulations are necessary beforehand. Traditional Hardware-in-the-Loop Simulation (HILS) is used to validate systems by creating a digital twin environment that integrates software and hardware to mimic reality. However, HILS requires high investment costs for hardware, posing a significant hurdle for companies. To address this issue, this study proposes a Software-in-the-Loop Simulation (SILS) framework using SCADA/EMS and MATLAB/Simulink(R2024a). The proposed SILS framework is highly compatible with Energy Management Systems (EMSs) and Supervisory Control and Data Acquisition (SCADA), allowing near real-time data exchange and scenario-based analysis without relying on physical hardware. According to the simulation results, SILS effectively replicates the dynamic behavior of microgrid components such as solar power generation systems, energy storage systems (ESSs), and diesel generators. Solution providers can quickly conduct feasibility tests through systems that simulate actual power systems. They can test the operation of SCADA/EMS at a lower cost and reduce on-site time, thereby reducing business costs and preemptively addressing potential issues in the field. This paper demonstrates how SILS can contribute to establishing optimal operation strategies and power supply stability through case studies, including daily operation optimization and autonomous operation scenarios for microgrids. This research provides a foundation for the feasibility of microgrid solution construction by enabling software performance evaluations and the verification of economic expected returns in the early stages of a project.

Suggested Citation

  • Seonghyeon Kim & Young-Jin Kim & Sungyun Choi, 2025. "The Development of a MATLAB/Simulink-SCADA/EMS-Integrated Framework for Microgrid Pre-Validation," Energies, MDPI, vol. 18(11), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2739-:d:1663864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lambert, Mathieu & Hassani, Rachid, 2023. "Diesel genset optimization in remote microgrids," Applied Energy, Elsevier, vol. 340(C).
    2. Gi-Ho Lee & Jae-Young Park & Seung-Jun Ham & Young-Jin Kim, 2020. "Comparative Study on Optimization Solvers for Implementation of a Two-Stage Economic Dispatch Strategy in a Microgrid Energy Management System," Energies, MDPI, vol. 13(5), pages 1-21, March.
    3. Kuntuarova, Saltanat & Licklederer, Thomas & Huynh, Thanh & Zinsmeister, Daniel & Hamacher, Thomas & Perić, Vedran, 2024. "Design and simulation of district heating networks: A review of modeling approaches and tools," Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    2. Westphal, Jan & Brunnemann, Johannes & Speerforck, Arne, 2025. "Enabling the dynamic simulation of an unaggregated, meshed district heating network with several thousand substations," Energy, Elsevier, vol. 322(C).
    3. Kılkış, Birol & Kılkış, Şiir, 2024. "Rational Exergy Management Model based metrics for minimum carbon dioxide emissions and decarbonization in Glasgow," Energy, Elsevier, vol. 310(C).
    4. Stanislav Chicherin & Yana Zhuikova & Tatyana Pyanykh & Andrey Zhuikov & Galym Baidyussenov & Saule Abildinova, 2024. "The First Fifth-Generation District Heating and Cooling System in Kazakhstan: Planning and Design," Energies, MDPI, vol. 17(23), pages 1-17, December.
    5. Dibos, Sina & Pesch, Thiemo & Benigni, Andrea, 2024. "HeatNetSim: An open-source simulation tool for heating and cooling networks suitable for future energy systems," Energy, Elsevier, vol. 312(C).
    6. Cristian Hoyos-Velandia & Lina Ramirez-Hurtado & Jaime Quintero-Restrepo & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt, 2022. "Cost Functions for Generation Dispatching in Microgrids for Non-Interconnected Zones in Colombia," Energies, MDPI, vol. 15(7), pages 1-14, March.
    7. Ke Xu & Dengxin Ai & Changlong Sun & Yan Qi & Jiaojiao Wang & Fan Yang & Hechen Ren, 2025. "Green’s Function Approach for Simulating District Heating Networks," Energies, MDPI, vol. 18(10), pages 1-13, May.
    8. Huynh, Thanh & Friedrich, Pascal & Thiem, Sebastian & Danov, Vladimir & Steinke, Florian & Niessen, Stefan, 2024. "Local multi-modal energy market for thermal–electric energy systems with consideration of temperature flexibility in heating subnetworks," Energy, Elsevier, vol. 313(C).
    9. Vanderlei Aparecido Silva & Alexandre Rasi Aoki & Germano Lambert-Torres, 2020. "Optimal Day-Ahead Scheduling of Microgrids with Battery Energy Storage System," Energies, MDPI, vol. 13(19), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2739-:d:1663864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.