IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2581-d1657492.html
   My bibliography  Save this article

Modelling the Temperature of a Data Centre Cooling System Using Machine Learning Methods

Author

Listed:
  • Adam Kula

    (Joint Doctorate School, Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Daniel Dąbrowski

    (Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Marcin Blachnik

    (Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Maciej Sajkowski

    (Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Albert Smalcerz

    (Department of Industrial Informatics, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland)

  • Zygmunt Kamiński

    (KAMSOFT S.A., 1 Maja 133, 40-235 Katowice, Poland)

Abstract

Reducing the energy consumption of a data centre while maintaining the requirements of the compute resources is a challenging problem that requires intelligent system design. It even becomes more challenging when dealing with an operating data centre. To achieve that goal without compromising the working conditions of the compute resources, a temperature model is needed that estimates the temperature within the hot corridor of the cooling system based on the properties of the external weather conditions and internal conditions such as server energy consumption, and cooling system state. In this paper, we discuss the dataset creation process as well as the process of evaluating a model for forecasting the temperature in the warm corridor of the data centre. The proposed solution compares two new neural network architectures, namely Time-Series Dense Encoder (TiDE) and Time-Series Mixer (TSMixer) with classical methods such as Random Forest and XGBoost and AutoARIMA. The obtained results indicate that the lowest prediction error was achieved by the TiDE model allowing to achieve 0.1270 of N-RMSE followed by the XGBoost model with 0.1275 of N-RMSE. The additional analysis indicates a limitation of the use of the XGBoost model which tends to underestimate temperature as it approaches higher values, which is particularly important in avoiding safety conditions violations of the compute units.

Suggested Citation

  • Adam Kula & Daniel Dąbrowski & Marcin Blachnik & Maciej Sajkowski & Albert Smalcerz & Zygmunt Kamiński, 2025. "Modelling the Temperature of a Data Centre Cooling System Using Machine Learning Methods," Energies, MDPI, vol. 18(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2581-:d:1657492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    2. Huang, Sen & Lin, Yashen & Chinde, Venkatesh & Ma, Xu & Lian, Jianming, 2021. "Simulation-based performance evaluation of model predictive control for building energy systems," Applied Energy, Elsevier, vol. 281(C).
    3. Marcin Blachnik & Sławomir Walkowiak & Adam Kula, 2023. "Large Scale, Mid Term Wind Farms Power Generation Prediction," Energies, MDPI, vol. 16(5), pages 1-15, March.
    4. Bass, Brett & New, Joshua & Clinton, Nicholas & Adams, Mark & Copeland, Bill & Amoo, Charles, 2022. "How close are urban scale building simulations to measured data? Examining bias derived from building metadata in urban building energy modeling," Applied Energy, Elsevier, vol. 327(C).
    5. Harish, V.S.K.V. & Kumar, Arun, 2016. "A review on modeling and simulation of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1272-1292.
    6. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ohlsson, K.E. Anders & Olofsson, Thomas, 2021. "Benchmarking the practice of validation and uncertainty analysis of building energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Schmidt, Mischa & Åhlund, Christer, 2018. "Smart buildings as Cyber-Physical Systems: Data-driven predictive control strategies for energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 742-756.
    4. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    5. Barber, Kyle A. & Krarti, Moncef, 2022. "A review of optimization based tools for design and control of building energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Ohlsson, K.E. Anders & Nair, Gireesh & Olofsson, Thomas, 2022. "Uncertainty in model prediction of energy savings in building retrofits: Case of thermal transmittance of windows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Liu, Zhongbing & Wu, Zhenghong & He, Xihua, 2017. "Dynamical simulation of building integrated photovoltaic thermoelectric wall system: Balancing calculation speed and accuracy," Applied Energy, Elsevier, vol. 204(C), pages 887-897.
    8. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    9. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    10. Pernille Eskerod & Svend Hollensen & Manuel Francisco Morales-Contreras & Jesús Arteaga-Ortiz, 2019. "Drivers for Pursuing Sustainability through IoT Technology within High-End Hotels—An Exploratory Study," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    11. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    12. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    13. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    14. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    15. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    16. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    17. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    18. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    19. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    20. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2581-:d:1657492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.