IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2505-d1654515.html
   My bibliography  Save this article

An Adaptive Control Strategy for a Better Performance of the Paralleled PV-BES-VSG Power System

Author

Listed:
  • Xian Gao

    (College of Information Science and Technology & College of Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China)

  • Dao Zhou

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Amjad Anvari-Moghaddam

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Frede Blaabjerg

    (AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

The growing integration of renewable energy sources has led to the development of virtual synchronous generator (VSG) control as a way to enhance system stability and offer primary frequency regulation. These functions of VSGs usually rely on the photovoltaic (PV) system or battery energy storage (BES), which is equipped at the DC side of the system. However, due to differences in the initial state of charges (SoCs) and uneven power distribution, the SoCs of battery energy storage systems (BESs) may become unbalanced, posing risks to the healthy operation of BESs and the overall system reliability. To realize SoC balancing, an adaptive control scheme for a paralleled PV-BES-VSG power system is presented. The adaptive SoC balancing term is applied to the active power references based on a simple segmented quadratic function. The proposed control strategy can realize optimal operation of paralleled VSGs and reduce SoC imbalance at the same time. The effectiveness of the proposed control scheme is evaluated via a case study system consisting of two paralleled PV-BES-VSG units using Matlab/Simulink R2021a.

Suggested Citation

  • Xian Gao & Dao Zhou & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2025. "An Adaptive Control Strategy for a Better Performance of the Paralleled PV-BES-VSG Power System," Energies, MDPI, vol. 18(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2505-:d:1654515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    2. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Xu, Kangkang & He, Tailong & Yang, Pan & Meng, Xianbing & Zhu, Chengjiu & Jin, Xi, 2024. "A new online SOC estimation method using broad learning system and adaptive unscented Kalman filter algorithm," Energy, Elsevier, vol. 309(C).
    3. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    4. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    5. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    6. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    7. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    8. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    9. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    10. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    11. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    12. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    13. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    14. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    15. Hu, Jingwei & Li, Xiaodong & Fang, Zheng & Cheng, Jun & Yi, Longqiang & Zhang, Zhihong, 2025. "Estimate state of charge in lithium-ion batteries with unknown data," Applied Energy, Elsevier, vol. 389(C).
    16. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    17. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    18. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    19. Cheng Li & Gi-Woo Kim, 2024. "Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Robust Unscented Kalman Filter," Energies, MDPI, vol. 17(1), pages 1-18, January.
    20. Panpan Hu & W. F. Tang & C. H. Li & Shu-Lun Mak & C. Y. Li & C. C. Lee, 2023. "Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network," Energies, MDPI, vol. 16(14), pages 1-19, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2505-:d:1654515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.