IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p1998-d1381089.html
   My bibliography  Save this article

Machine Fault Diagnosis through Vibration Analysis: Time Series Conversion to Grayscale and RGB Images for Recognition via Convolutional Neural Networks

Author

Listed:
  • Dominik Łuczak

    (Faculty of Automatic Control, Robotics and Electrical Engineering, Poznan University of Technology, 60-965 Poznań, Poland)

Abstract

Accurate and timely fault detection is crucial for ensuring the smooth operation and longevity of rotating machinery. This study explores the effectiveness of image-based approaches for machine fault diagnosis using data from a 6DOF IMU (Inertial Measurement Unit) sensor. Three novel methods are proposed. The IMU6DoF-Time2GrayscaleGrid-CNN method converts the time series sensor data into a single grayscale image, leveraging the efficiency of a grayscale representation and the power of convolutional neural networks (CNNs) for feature extraction. The IMU6DoF-Time2RGBbyType-CNN method utilizes RGB images. The IMU6DoF-Time2RGBbyAxis-CNN method employs an RGB image where each channel corresponds to a specific axis (X, Y, Z) of the sensor data. This axis-aligned representation potentially allows the CNN to learn the relationships between movements along different axes. The performance of all three methods is evaluated through extensive training and testing on a dataset containing various operational states (idle, normal, fault). All methods achieve high accuracy in classifying these states. While the grayscale method offers the fastest training convergence, the RGB-based methods might provide additional insights. The interpretability of the models is also explored using Grad-CAM visualizations. This research demonstrates the potential of image-based approaches with CNNs for robust and interpretable machine fault diagnosis using sensor data.

Suggested Citation

  • Dominik Łuczak, 2024. "Machine Fault Diagnosis through Vibration Analysis: Time Series Conversion to Grayscale and RGB Images for Recognition via Convolutional Neural Networks," Energies, MDPI, vol. 17(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:1998-:d:1381089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/1998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/1998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Huan & Xu, Shaohui & Gu, Wei, 2022. "An abnormal wind turbine data cleaning algorithm based on color space conversion and image feature detection," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    2. Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
    3. Chengming Zuo & Juchuan Dai & Guo Li & Mimi Li & Fan Zhang, 2023. "Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC," Energies, MDPI, vol. 16(6), pages 1-24, March.
    4. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    5. Xiangqing Yin & Yi Liu & Li Yang & Wenchao Gao, 2022. "Abnormal Data Cleaning Method for Wind Turbines Based on Constrained Curve Fitting," Energies, MDPI, vol. 15(17), pages 1-22, August.
    6. Mu, Yunfei & Xu, Yurui & Cao, Yan & Chen, Wanqing & Jia, Hongjie & Yu, Xiaodan & Jin, Xiaolong, 2022. "A two-stage scheduling method for integrated community energy system based on a hybrid mechanism and data-driven model," Applied Energy, Elsevier, vol. 323(C).
    7. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
    8. Liang, Guoyuan & Su, Yahao & Wu, Xinyu & Ma, Jiajun & Long, Huan & Song, Zhe, 2023. "Abnormal data cleaning for wind turbines by image segmentation based on active shape model and class uncertainty," Renewable Energy, Elsevier, vol. 216(C).
    9. Pengfei Wang & Yang Liu & Qinqin Sun & Yingqi Bai & Chaopeng Li, 2022. "Research on Data Cleaning Algorithm Based on Multi Type Construction Waste," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:1998-:d:1381089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.