IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1141-d1347517.html
   My bibliography  Save this article

Battery Management in Electric Vehicle Routing Problems: A Review

Author

Listed:
  • Xabier A. Martin

    (Research Center on Production Management and Engineering (CIGIP), Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Marc Escoto

    (Research Center on Production Management and Engineering (CIGIP), Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Antoni Guerrero

    (Research Center on Production Management and Engineering (CIGIP), Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Angel A. Juan

    (Research Center on Production Management and Engineering (CIGIP), Universitat Politècnica de València, 03801 Alcoy, Spain)

Abstract

The adoption of electric vehicles (EVs) has gained significant momentum in recent years as a sustainable alternative to traditional internal combustion engine vehicles. However, the efficient utilization of batteries in EVs, coupled with the growing demand for sustainable transportation, has posed complex challenges for battery management in the context of electric vehicle routing problems in a broad sense, which includes vehicle routing problems, team orienteering problems, and arc routing problems, all of them using EVs. This paper presents a comprehensive review of the state-of-the-art approaches, methodologies, and strategies for battery management in each of the aforementioned optimization problems. We explore the relevant factors influencing battery performance and the interplay between routing, charging, and energy management in the context of EVs. The paper also discusses the advances in optimization algorithms, vehicle-to-grid integration, and intelligent decision-making techniques aimed at enhancing the range, reliability, and sustainability of EV operations. Key findings indicate a paradigm shift towards addressing uncertainties, dynamic conditions, and synchronization challenges inherent in large-scale and dynamic routing problems within the context of EVs that require efficient battery management.

Suggested Citation

  • Xabier A. Martin & Marc Escoto & Antoni Guerrero & Angel A. Juan, 2024. "Battery Management in Electric Vehicle Routing Problems: A Review," Energies, MDPI, vol. 17(5), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1141-:d:1347517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan & Qu, Xiaobo, 2022. "Dynamic stochastic electric vehicle routing with safe reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Na Wang & Yihao Sun & Hongfeng Wang, 2021. "An Adaptive Memetic Algorithm for Dynamic Electric Vehicle Routing Problem with Time-Varying Demands," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, March.
    3. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    4. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    5. Campbell, James F. & Corberán, Ángel & Plana, Isaac & Sanchis, José M. & Segura, Paula, 2021. "Solving the length constrained K-drones rural postman problem," European Journal of Operational Research, Elsevier, vol. 292(1), pages 60-72.
    6. Montoya, Alejandro & Guéret, Christelle & Mendoza, Jorge E. & Villegas, Juan G., 2017. "The electric vehicle routing problem with nonlinear charging function," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 87-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Feng & Wei, Qu & Wang, Miao & Guo, Zhaoxia & Wallace, Stein W., 2023. "Deep attention models with dimension-reduction and gate mechanisms for solving practical time-dependent vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    3. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    4. Morteza Keshtkaran & Koorush Ziarati & Andrea Bettinelli & Daniele Vigo, 2016. "Enhanced exact solution methods for the Team Orienteering Problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 591-601, January.
    5. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    6. Alberto Ponso & Angelo Bonfitto & Giovanni Belingardi, 2023. "Route Planning for Electric Vehicles Including Driving Style, HVAC, Payload and Battery Health," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    8. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    9. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    10. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    11. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    12. Sina Abbasi & Maryam Moosivand & Ilias Vlachos & Mohammad Talooni, 2023. "Designing the Location–Routing Problem for a Cold Supply Chain Considering the COVID-19 Disaster," Sustainability, MDPI, vol. 15(21), pages 1-24, October.
    13. Gansterer, Margaretha & Födermayr, Patrick & Hartl, Richard F., 2021. "The capacitated multi-level lot-sizing problem with distributed agents," International Journal of Production Economics, Elsevier, vol. 235(C).
    14. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    15. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    16. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    17. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    18. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.
    19. Vansteenwegen, Pieter & Mateo, Manuel, 2014. "An iterated local search algorithm for the single-vehicle cyclic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 237(3), pages 802-813.
    20. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1141-:d:1347517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.