IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p936-d1340384.html
   My bibliography  Save this article

Optimal Trading Volume of Electricity and Capacity of Energy Storage System for Electric Vehicle Charging Station Integrated with Photovoltaic Generator

Author

Listed:
  • Yong Woo Jeong

    (Smart Robot Convergence Application Research Center, Pukyong National University, Busan 48513, Republic of Korea)

  • Kyung-Chang Lee

    (Department of Intelligent Robot Engineering, Pukyong National University, Busan 48513, Republic of Korea)

  • Chunghun Kim

    (Department of AI Electrical Engineering, Pai Chai University, Daejeon 35345, Republic of Korea)

  • Woo Young Choi

    (Department of Control and Instrumentation Engineering, Pukyong National University, Busan 48513, Republic of Korea)

Abstract

As penetration of EVs in the transportation sector is increasing, the demand for the mandatory installation of charging infrastructure also is increasing. In addition, renewable energy and energy storage systems (ESSs) are being reviewed for use in electric vehicle charging stations (EVCSs). In this paper, we present an optimal electricity trading volume and an optimal installation capacity of ESSs to maximize the daily profit of the EVCSs equipped with solar power generation when the EVCSs are licensed to sell energy to the power supplier during a specific time period. By formulating and solving the optimization problem of the EVCSs, this paper analyzes validation results for the different useful lives of ESSs, the peak power of a PV generator, and weather conditions at the Yangjae Solar Station and the Suseo Station public parking lot, Seoul, Republic of Korea. Furthermore, this paper validates that the daily expected profit of EVCSs with the proposed method outperforms the profit of conventional EVCSs which do not utilize ESSs.

Suggested Citation

  • Yong Woo Jeong & Kyung-Chang Lee & Chunghun Kim & Woo Young Choi, 2024. "Optimal Trading Volume of Electricity and Capacity of Energy Storage System for Electric Vehicle Charging Station Integrated with Photovoltaic Generator," Energies, MDPI, vol. 17(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:936-:d:1340384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaur, Amandeep & Kaushal, Jitender & Basak, Prasenjit, 2016. "A review on microgrid central controller," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 338-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Andrzej Szromba, 2020. "The Unified Power Quality Conditioner Control Method Based on the Equivalent Conductance Signals of the Compensated Load," Energies, MDPI, vol. 13(23), pages 1-27, November.
    4. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    5. Elkazaz, Mahmoud & Sumner, Mark & Thomas, David, 2021. "A hierarchical and decentralized energy management system for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 291(C).
    6. Jose R Sicchar & Carlos T. Da Costa & Jose R. Silva & Raimundo C. Oliveira & Werbeston D. Oliveira, 2018. "A Load-Balance System Design of Microgrid Cluster Based on Hierarchical Petri Nets," Energies, MDPI, vol. 11(12), pages 1-30, November.
    7. Dagar, Annu & Gupta, Pankaj & Niranjan, Vandana, 2021. "Microgrid protection: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    9. Burgio, Alessandro & Menniti, Daniele & Sorrentino, Nicola & Pinnarelli, Anna & Motta, Michele, 2018. "A compact nanogrid for home applications with a behaviour-tree-based central controller," Applied Energy, Elsevier, vol. 225(C), pages 14-26.
    10. Huimin Zhao & Lili He & Yelun Peng & Zhikang Shuai & Zhixue Zhang & Liang Hu, 2024. "A Refined DER-Level Transient Stability Prediction Method Considering Time-Varying Spatial–Temporal Correlations in Microgrids," Energies, MDPI, vol. 17(3), pages 1-19, January.
    11. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    12. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    13. Robert Salas-Puente & Silvia Marzal & Raul Gonzalez-Medina & Emilio Figueres & Gabriel Garcera, 2018. "Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization," Energies, MDPI, vol. 11(7), pages 1-31, July.
    14. Almada, J.B. & Leão, R.P.S. & Sampaio, R.F. & Barroso, G.C., 2016. "A centralized and heuristic approach for energy management of an AC microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1396-1404.
    15. Maximiliano Lainfiesta & Xuewei Zhang, 2020. "Frequency Stability and Economic Operation of Transactive Multi-Microgrid Systems with Variable Interconnection Configurations," Energies, MDPI, vol. 13(10), pages 1-20, May.
    16. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    17. Dina A. Zaki & Hany M. Hasanien & Mohammed Alharbi & Zia Ullah & Mariam A. Sameh, 2023. "Hybrid Driving Training and Particle Swarm Optimization Algorithm-Based Optimal Control for Performance Improvement of Microgrids," Energies, MDPI, vol. 16(11), pages 1-18, May.
    18. Rosero, D.G. & Sanabria, E. & Díaz, N.L. & Trujillo, C.L. & Luna, A. & Andrade, F., 2023. "Full-deployed energy management system tested in a microgrid cluster," Applied Energy, Elsevier, vol. 334(C).
    19. Kamel, Rashad M. & Alsaffar, Mohammad A. & Habib, M.K., 2016. "Novel and simple scheme for Micro-Grid protection by connecting its loads neutral points: A review on Micro-Grid protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 931-942.
    20. Andishgar, Mohammad Hadi & Gholipour, Eskandar & Hooshmand, Rahmat-allah, 2017. "An overview of control approaches of inverter-based microgrids in islanding mode of operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1043-1060.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:936-:d:1340384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.