IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p5011-d1494603.html
   My bibliography  Save this article

LCCO 2 Assessment and Fertilizer Production from Absorbed-CO 2 Solid Matter in a Small-Scale DACCU Plant

Author

Listed:
  • Tianjiao Cheng

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 162-0041, Japan)

  • Takeji Hirota

    (E-Plus Co., Osaka 592-0012, Japan)

  • Hiroshi Onoda

    (Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 162-0041, Japan)

  • Andante Hadi Pandyaswargo

    (Environmental Research Institute, Waseda University, Tokyo 162-0041, Japan)

Abstract

This study investigates a novel method of utilizing Direct Air Capture (DAC) technology for fertilizer production. Unlike traditional Direct Air Carbon Capture and Utilization (DACCU) technologies, Direct Air Carbon Capture for Fertilizers (FDAC) has the potential to produce fertilizers directly. This study aims to assess the feasibility of FDAC-based fertilizer production by examining the current state of traditional DAC technologies, evaluating the CO 2 fixation potential of FDAC, and analyzing the decarbonization effect of producing fertilizers using FDAC. Our evaluation results indicate that CO 2 emissions from producing 1 ton of conventional chemical fertilizer, FDAC fertilizer (current status), FDAC fertilizer with ingredient adjustment (sodium hydroxide), and FDAC fertilizer with ingredient adjustment (magnesium hydroxide) are 1.69, 1.12, 1.04, and 1.06 tons of CO 2 , respectively. The FDAC fertilizer (current status) emits 0.57 tons of CO 2 per ton less than commercial fertilizers. FDAC fertilizers also have the potential to reduce CO 2 emissions further when the fertilizer composition is adjusted, offering a promising solution for lowering the environmental impact of fertilizer production. Significant CO 2 reduction can be expected by replacing conventional low-intensity chemical fertilizers with FDAC-produced fertilizers.

Suggested Citation

  • Tianjiao Cheng & Takeji Hirota & Hiroshi Onoda & Andante Hadi Pandyaswargo, 2024. "LCCO 2 Assessment and Fertilizer Production from Absorbed-CO 2 Solid Matter in a Small-Scale DACCU Plant," Energies, MDPI, vol. 17(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5011-:d:1494603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/5011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/5011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenchao Liu & Yuejie Yang & Chengcheng Qiao & Chen Liu & Boyu Lian & Qingwang Yuan, 2023. "Progress of Seepage Law and Development Technologies for Shale Condensate Gas Reservoirs," Energies, MDPI, vol. 16(5), pages 1-30, March.
    2. Chenxu Yang & Jintao Wu & Haojun Wu & Yong Jiang & Xinfei Song & Ping Guo & Qixuan Zhang & Hao Tian, 2024. "Research on Gas Injection Limits and Development Methods of CH 4 /CO 2 Synergistic Displacement in Offshore Fractured Condensate Gas Reservoirs," Energies, MDPI, vol. 17(13), pages 1-12, July.
    3. Kaiyi Zhang & Fengshuang Du & Bahareh Nojabaei, 2020. "Effect of Pore Size Heterogeneity on Hydrocarbon Fluid Distribution, Transport, and Primary and Secondary Recovery in Nano-Porous Media," Energies, MDPI, vol. 13(7), pages 1-22, April.
    4. Xiaomeng Cao & Yuan Gao & Jingwei Cui & Shuangbiao Han & Lei Kang & Sha Song & Chengshan Wang, 2020. "Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China," Energies, MDPI, vol. 13(8), pages 1-25, April.
    5. Chen, Min & Geng, Jianhua & Cui, Linyong & Xu, Fengyin & Thomas, Hywel, 2024. "Evaluation of CO2-enhanced gas recovery and storage through coupled non-isothermal compositional two-phase flow and geomechanics modelling," Energy, Elsevier, vol. 305(C).
    6. Karolina Novak Mavar & Nediljka Gaurina-Međimurec & Lidia Hrnčević, 2021. "Significance of Enhanced Oil Recovery in Carbon Dioxide Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    7. Mohamed Mehana & Qinjun Kang & Hari Viswanathan, 2020. "Molecular-Scale Considerations of Enhanced Oil Recovery in Shale," Energies, MDPI, vol. 13(24), pages 1-13, December.
    8. Liang Gong & Yuan Zhang & Na Li & Ze-Kai Gu & Bin Ding & Chuan-Yong Zhu, 2020. "Molecular Investigation on the Displacement Characteristics of CH 4 by CO 2 , N 2 and Their Mixture in a Composite Shale Model," Energies, MDPI, vol. 14(1), pages 1-13, December.
    9. Huang, Jingwei & Jin, Tianying & Barrufet, Maria & Killough, John, 2020. "Evaluation of CO2 injection into shale gas reservoirs considering dispersed distribution of kerogen," Applied Energy, Elsevier, vol. 260(C).
    10. Ewa Knapik & Katarzyna Chruszcz-Lipska, 2020. "Chemistry of Reservoir Fluids in the Aspect of CO 2 Injection for Selected Oil Reservoirs in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:5011-:d:1494603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.