Multi-Objective Plum Tree Algorithm and Machine Learning for Heating and Cooling Load Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
- Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Alizamir, Meysam & Kim, Sungwon & Kisi, Ozgur & Zounemat-Kermani, Mohammad, 2020. "A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions," Energy, Elsevier, vol. 197(C).
- Lu, Chujie & Li, Sihui & Reddy Penaka, Santhan & Olofsson, Thomas, 2023. "Automated machine learning-based framework of heating and cooling load prediction for quick residential building design," Energy, Elsevier, vol. 274(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
- Ercan Köse & Sevil Kutlu Kaynar, 2025. "Energy Demand Forecasting and Policy Development in Turkey," Energies, MDPI, vol. 18(13), pages 1-31, June.
- Sami Kabir & Mohammad Shahadat Hossain & Karl Andersson, 2024. "An Advanced Explainable Belief Rule-Based Framework to Predict the Energy Consumption of Buildings," Energies, MDPI, vol. 17(8), pages 1-18, April.
- Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
- Zhang, Chaobo & Zhang, Jian & Zhao, Yang & Lu, Jie, 2025. "Automated data-driven building energy load prediction method based on generative pre-trained transformers (GPT)," Energy, Elsevier, vol. 318(C).
- Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
- Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.
- Chun-Wei Chen, 2023. "A Feasibility Discussion: Is ML Suitable for Predicting Sustainable Patterns in Consumer Product Preferences?," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Maowen Sun & Boyi Liang & Xuebin Meng & Yunfei Zhang & Zong Wang & Jia Wang, 2024. "Study on the Evolution of Spatial and Temporal Patterns of Carbon Emissions and Influencing Factors in China," Land, MDPI, vol. 13(6), pages 1-24, June.
- Guijo-Rubio, D. & Durán-Rosal, A.M. & Gutiérrez, P.A. & Gómez-Orellana, A.M. & Casanova-Mateo, C. & Sanz-Justo, J. & Salcedo-Sanz, S. & Hervás-Martínez, C., 2020. "Evolutionary artificial neural networks for accurate solar radiation prediction," Energy, Elsevier, vol. 210(C).
- Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Qun Niu & Han Wang & Ziyuan Sun & Zhile Yang, 2019. "An Improved Bare Bone Multi-Objective Particle Swarm Optimization Algorithm for Solar Thermal Power Plants," Energies, MDPI, vol. 12(23), pages 1-22, November.
- Baibing Chi & Yashuai Li & Dawei Zhou, 2024. "A Hybrid Method of Cooling and Heating Consumption Prediction for Six Types of Buildings Based on Machine Learning," Sustainability, MDPI, vol. 16(24), pages 1-27, December.
- Neshat, Mehdi & Nezhad, Meysam Majidi & Mirjalili, Seyedali & Garcia, Davide Astiaso & Dahlquist, Erik & Gandomi, Amir H., 2023. "Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy," Energy, Elsevier, vol. 278(C).
- Lin Pan & Sheng Wang & Jiying Wang & Min Xiao & Zhirong Tan, 2022. "Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load," Energies, MDPI, vol. 15(24), pages 1-31, December.
- Khaled Bawaneh & Samir Das & Md. Rasheduzzaman, 2024. "Energy Consumption Analysis and Characterization of the Residential Sector in the US towards Sustainable Development," Energies, MDPI, vol. 17(11), pages 1-24, June.
- Rashid Amin & Muzammal Majeed & Farrukh Shoukat Ali & Adeel Ahmed & Mudassar Hussain, 2022. "Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm," International Journal of Innovations in Science & Technology, 50sea, vol. 4(5), pages 158-172, July.
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:3054-:d:1419124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.