A Well Production Prediction Method of Tight Reservoirs Based on a Hybrid Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
- Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aoxue Zhang & Yanlong Zhao & Xuanxuan Li & Xu Fan & Xiaoqing Ren & Qingxia Li & Leishu Yue, 2024. "Development of a Hybrid AI Model for Fault Prediction in Rod Pumping System for Petroleum Well Production," Energies, MDPI, vol. 17(21), pages 1-15, October.
- Dongyan Fan & Sicen Lai & Hai Sun & Yuqing Yang & Can Yang & Nianyang Fan & Minhui Wang, 2025. "Review of Machine Learning Methods for Steady State Capacity and Transient Production Forecasting in Oil and Gas Reservoir," Energies, MDPI, vol. 18(4), pages 1-25, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Aniket Vatsa & Ananda Shankar Hati & Vadim Bolshev & Alexander Vinogradov & Vladimir Panchenko & Prasun Chakrabarti, 2023. "Deep Learning-Based Transformer Moisture Diagnostics Using Long Short-Term Memory Networks," Energies, MDPI, vol. 16(5), pages 1-14, March.
- Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
- Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
- Yaxin Tian & Xiang Ren & Keke Li & Xiangqian Li, 2025. "Carbon Dioxide Emission Forecast: A Review of Existing Models and Future Challenges," Sustainability, MDPI, vol. 17(4), pages 1-29, February.
- Li, Chaofan & Song, Yajing & Xu, Long & Zhao, Ning & Wang, Fan & Fang, Lide & Li, Xiaoting, 2022. "Prediction of the interfacial disturbance wave velocity in vertical upward gas-liquid annular flow via ensemble learning," Energy, Elsevier, vol. 242(C).
- Hou, Guolian & Fan, Yuzhen & Wang, Junjie, 2024. "Application of a novel dynamic recurrent fuzzy neural network with rule self-adaptation based on chaotic quantum pigeon-inspired optimization in modeling for gas turbine," Energy, Elsevier, vol. 290(C).
- Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
- Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
- Banglong Pan & Hanming Yu & Hongwei Cheng & Shuhua Du & Shutong Cai & Minle Zhao & Juan Du & Fazhi Xie, 2023. "A CNN–LSTM Machine-Learning Method for Estimating Particulate Organic Carbon from Remote Sensing in Lakes," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
- Zhang, Yunfei & Zhou, Zhihua & Du, Yahui & Shen, Jun & Li, Zhenxing & Yuan, Jianjuan, 2023. "A data transfer method based on one dimensional convolutional neural network for cross-building load prediction," Energy, Elsevier, vol. 277(C).
- Yang, Jiuqiang & Lin, Niantian & Zhang, Kai & Fu, Chao & Zhang, Chong, 2024. "Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis," Energy, Elsevier, vol. 299(C).
- Daihong Gu & Rongchen Zheng & Peng Cheng & Shuaiqi Zhou & Gongjie Yan & Haitao Liu & Kexin Yang & Jianguo Wang & Yuan Zhu & Mingwei Liao, 2024. "Single Well Production Prediction Model of Gas Reservoir Based on CNN-BILSTM-AM," Energies, MDPI, vol. 17(22), pages 1-18, November.
- Juhyun Kim & Sunlee Han & Daehee Kim & Youngsoo Lee, 2024. "Gas Pipeline Leak Detection by Integrating Dynamic Modeling and Machine Learning Under the Transient State," Energies, MDPI, vol. 17(21), pages 1-23, November.
- Wang, Kun & Peng, Zhenghong & Cai, Meng & Wu, Hao & Liu, Lingbo & Sun, Zhihao, 2024. "Coupling graph neural networks and travel mode choice for human mobility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
- Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
- Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
- Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
- Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
More about this item
Keywords
tight oil reservoir; CNN-LSTM neural network; production prediction; fracturing horizontal wells;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2904-:d:1103595. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.