IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2731-d1097842.html
   My bibliography  Save this article

Component-Oriented Modeling Method for Real-Time Simulation of Power Systems

Author

Listed:
  • Zhao Jin

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Jie Zhang

    (NR Electric Co., Ltd., Nanjing 211102, China)

  • Shuyuan Wang

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Bingda Zhang

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

This paper proposes a component-oriented modeling method for power system simulation, which optimizes the modeling process of the FPGA-based real-time digital simulator (FRTDS) to enhance its computational efficiency. In this paper, a component modeling method for various types of elements in the power system is presented, which makes the modeling process in FRTDS more user-friendly and highly scalable. By applying the concepts of combination and reconstruction of components to electrical components, the component-oriented modeling method becomes better suited for combined elements with fixed connection modes and elements that require online model replacement in the power system. Utilizing the characteristics of component-oriented modeling, the variable declaration structure and node elimination strategy in the simulation script are optimized, enabling the simulation script to fit better with the hardware structure of FRTDS. Additionally, a substation is simulated in FRTDS with a simulation step size of 50 µs, thus verifying the correctness of the component-oriented modeling method and its ability to improve the computational power of FRTDS.

Suggested Citation

  • Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2731-:d:1097842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingda Zhang & Dan Zhao & Zhao Jin & Yanjie Wu, 2017. "Multivalued Coefficient Prestorage and Block Parallel Method for Real-Time Simulation of Microgrid on FRTDS," Energies, MDPI, vol. 10(9), pages 1-18, August.
    2. Kirti Gupta & Subham Sahoo & Bijaya Ketan Panigrahi & Frede Blaabjerg & Petar Popovski, 2021. "On the Assessment of Cyber Risks and Attack Surfaces in a Real-Time Co-Simulation Cybersecurity Testbed for Inverter-Based Microgrids," Energies, MDPI, vol. 14(16), pages 1-30, August.
    3. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    4. Gaurav Yadav & Yuan Liao & Austin D. Burfield, 2023. "Hardware-in-the-Loop Testing for Protective Relays Using Real Time Digital Simulator (RTDS)," Energies, MDPI, vol. 16(3), pages 1-30, January.
    5. Jiyoung Song & Kyeon Hur & Jeehoon Lee & Hyunjae Lee & Jaegul Lee & Solyoung Jung & Jeonghoon Shin & Heejin Kim, 2020. "Hardware-in-the-Loop Simulation Using Real-Time Hybrid-Simulator for Dynamic Performance Test of Power Electronics Equipment in Large Power System," Energies, MDPI, vol. 13(15), pages 1-16, August.
    6. Jiaxuan Han & Qiteng Hong & Zhiwang Feng & Mazheruddin H. Syed & Graeme M. Burt & Campbell D. Booth, 2022. "Design and Implementation of a Real-Time Hardware-in-the-Loop Platform for Prototyping and Testing Digital Twins of Distributed Energy Resources," Energies, MDPI, vol. 15(18), pages 1-19, September.
    7. Bingda Zhang & Yanjie Wu & Zhao Jin & Yang Wang, 2017. "A Real-Time Digital Solver for Smart Substation Based on Orders," Energies, MDPI, vol. 10(11), pages 1-16, November.
    8. Leonel Estrada & Nimrod Vázquez & Joaquín Vaquero & Ángel de Castro & Jaime Arau, 2020. "Real-Time Hardware in the Loop Simulation Methodology for Power Converters Using LabVIEW FPGA," Energies, MDPI, vol. 13(2), pages 1-19, January.
    9. Bingda Zhang & Xianglong Jin & Sijia Tu & Zhao Jin & Jie Zhang, 2019. "A New FPGA-Based Real-Time Digital Solver for Power System Simulation," Energies, MDPI, vol. 12(24), pages 1-22, December.
    10. Bingda Zhang & Shaowen Fu & Zhao Jin & Ruizhao Hu, 2017. "A Novel FPGA-Based Real-Time Simulator for Micro-Grids," Energies, MDPI, vol. 10(8), pages 1-17, August.
    11. Kati Sidwall & Paul Forsyth, 2020. "Advancements in Real-Time Simulation for the Validation of Grid Modernization Technologies," Energies, MDPI, vol. 13(16), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingda Zhang & Xianglong Jin & Sijia Tu & Zhao Jin & Jie Zhang, 2019. "A New FPGA-Based Real-Time Digital Solver for Power System Simulation," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. Ruyun Cheng & Li Yao & Xinyang Yan & Bingda Zhang & Zhao Jin, 2021. "High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Meysam Yousefzadeh & Shahin Hedayati Kia & Mohammad Hoseintabar Marzebali & Davood Arab Khaburi & Hubert Razik, 2022. "Power-Hardware-in-the-Loop for Stator Windings Asymmetry Fault Analysis in Direct-Drive PMSG-Based Wind Turbines," Energies, MDPI, vol. 15(19), pages 1-17, September.
    4. Heba-Allah I. ElAzab & R. A. Swief & Hanady H. Issa & Noha H. El-Amary & Alsnosy Balbaa & H. K. Temraz, 2018. "FPGA Eco Unit Commitment Based Gravitational Search Algorithm Integrating Plug-in Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-17, September.
    5. Junjie Zhu & Bingda Zhang, 2020. "Multi-Rate Real-Time Simulation Method Based on the Norton Equivalent," Energies, MDPI, vol. 13(17), pages 1-15, September.
    6. Sisi Pan & Wei Jiang & Ming Li & Hua Geng & Jieyun Wang, 2022. "Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids," Energies, MDPI, vol. 15(6), pages 1-16, March.
    7. Shuo Jin & Hao Yu & Xiaopeng Fu & Zhiying Wang & Kai Yuan & Peng Li, 2019. "A Universal Design of FPGA-Based Real-Time Simulator for Active Distribution Networks Based on Reconfigurable Computing," Energies, MDPI, vol. 12(11), pages 1-16, May.
    8. Bingda Zhang & Yang Wang & Sijia Tu & Zhao Jin, 2018. "FPGA-Based Real-Time Digital Solver for Electro-Mechanical Transient Simulation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    9. Bingda Zhang & Ruizhao Hu & Sijia Tu & Jie Zhang & Xianglong Jin & Yun Guan & Junjie Zhu, 2018. "Modeling of Power System Simulation Based on FRTDS," Energies, MDPI, vol. 11(10), pages 1-17, October.
    10. Jaesik Kang, 2022. "Comprehensive Analysis of Transient Overvoltage Phenomena for Metal-Oxide Varistor Surge Arrester in LCC-HVDC Transmission System with Special Protection Scheme," Energies, MDPI, vol. 15(19), pages 1-17, September.
    11. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    12. Sławomir Cieślik, 2021. "Mathematical Modeling of the Dynamics of Linear Electrical Systems with Parallel Calculations," Energies, MDPI, vol. 14(10), pages 1-23, May.
    13. Bin Wang & Qiangsong Zhao & Gong Zhang & Hongwei Zhang & Kaiyue Liu & Xuebin Yue, 2023. "Novel Active Damping Design Based on a Biquad Filter for an LLCL Grid-Tied Inverter," Energies, MDPI, vol. 16(3), pages 1-15, January.
    14. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    15. Jahangir Badar Soomro & Faheem Akhtar Chachar & Hafiz Mudassir Munir & Jamshed Ahmed Ansari & Amr S. Zalhaf & Mohammed Alqarni & Basem Alamri, 2022. "Efficient Hardware-in-the-Loop and Digital Control Techniques for Power Electronics Teaching," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    16. Ji Han & Shihong Miao & Jing Yu & Yifeng Dong & Junxian Hou & Simo Duan & Lixing Li, 2018. "Multi-Rate and Parallel Electromagnetic Transient Simulation Considering Nonlinear Characteristics of a Power System," Energies, MDPI, vol. 11(2), pages 1-15, February.
    17. Cem Haydaroğlu & Bilal Gümüş, 2022. "Fault Detection in Distribution Network with the Cauchy-M Estimate—RVFLN Method," Energies, MDPI, vol. 16(1), pages 1-18, December.
    18. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    19. Borja Rodríguez & Francisco González & Miguel Ángel Naya & Javier Cuadrado, 2020. "Assessment of Methods for the Real-Time Simulation of Electronic and Thermal Circuits," Energies, MDPI, vol. 13(6), pages 1-26, March.
    20. Aleksandr Skamyin & Yaroslav Shklyarskiy & Vasiliy Dobush & Iuliia Dobush, 2021. "Experimental Determination of Parameters of Nonlinear Electrical Load," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2731-:d:1097842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.