IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4036-d395746.html
   My bibliography  Save this article

Advancements in Real-Time Simulation for the Validation of Grid Modernization Technologies

Author

Listed:
  • Kati Sidwall

    (RTDS Technologies Inc., 150 Innovation Dr Unit 100, Winnipeg, MB R3T 2E1, Canada)

  • Paul Forsyth

    (RTDS Technologies Inc., 150 Innovation Dr Unit 100, Winnipeg, MB R3T 2E1, Canada)

Abstract

Real-time simulation and hardware-in-the-loop testing have increased in popularity as grid modernization has become more widespread. As the power system has undergone an evolution in the types of generator and load deployed on the system, the penetration and capabilities of automation and monitoring systems, and the structure of the energy market, a corresponding evolution has taken place in the way we model and test power system behavior and equipment. Consequently, emerging requirements for real-time simulators are very high when it comes to simulation fidelity, interfacing options, and ease of use. Ongoing advancements from a processing hardware, graphical user interface, and power system modelling perspective have enabled utilities, manufacturers, educational and research institutions, and consultants to apply real-time simulation to grid modernization projects. This paper summarizes various recent advancements from a particular simulator manufacturer, RTDS Technologies Inc. Many of these advancements have been enabled by growth in the high-performance processing space and the emerging availability of high-end processors for embedded designs. Others have been initiated or supported by developer participation in power industry working groups and study committees.

Suggested Citation

  • Kati Sidwall & Paul Forsyth, 2020. "Advancements in Real-Time Simulation for the Validation of Grid Modernization Technologies," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4036-:d:395746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4036/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sami Bouzid & Philippe Viarouge & Jérôme Cros, 2020. "Real-Time Digital Twin of a Wound Rotor Induction Machine Based on Finite Element Method," Energies, MDPI, vol. 13(20), pages 1-18, October.
    2. Cem Haydaroğlu & Bilal Gümüş, 2022. "Fault Detection in Distribution Network with the Cauchy-M Estimate—RVFLN Method," Energies, MDPI, vol. 16(1), pages 1-18, December.
    3. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    4. Sisi Pan & Wei Jiang & Ming Li & Hua Geng & Jieyun Wang, 2022. "Evaluation of the Communication Delay in a Hybrid Real-Time Simulator for Weak Grids," Energies, MDPI, vol. 15(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4036-:d:395746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.