IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1903-d1068505.html
   My bibliography  Save this article

On the Exact Analytical Formulas of Leakage Current-Based Supercapacitor Model Operating in Industrial Applications

Author

Listed:
  • Ziad M. Ali

    (Electrical Engineering Department, College of Engineering, Prince Sattam bin Abdulaziz University, Wadi Addawaser 11991, Saudi Arabia
    Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Martin Calasan

    (Faculty of Electrical Engineering, University of Montenegro, 81000 Podgorica, Montenegro)

  • Shady H. E. Abdel Aleem

    (Department of Electrical Engineering, Valley High Institute of Engineering and Technology, Science Valley Academy, Qalyubia 44971, Egypt)

  • Hany M. Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

Abstract

The resistance–capacitance (RC) model is one of the most applicable circuits for modeling the charging and discharging processes of supercapacitors (SCs). Although this circuit is usually used in the electric and thermal investigation of the performance of SCs, it does not include leakage currents. This paper presents exact analytical formulas of leakage-current-based supercapacitor models that can be used in industrial applications, i.e., constant-power-based applications. In the proposed model, current and voltage are represented as a solution of nonlinear equations that are solved using the standard Newton method. The proposed expressions’ accuracy is compared with the results obtained using traditional numerical integration methods with leakage current formulation and other methods, found in the literature, with no leakage current formulation. The results confirm that including leakage current represents a more accurate and realistic manner of modeling SCs. The results show that the derived expressions are precise, allowing the generation of results that closely match those obtained using traditional numerical-based methods. The derived expressions can be used to investigate SCs further and achieve more accurate and efficient regulation and control of SCs in different applications.

Suggested Citation

  • Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Hany M. Hasanien, 2023. "On the Exact Analytical Formulas of Leakage Current-Based Supercapacitor Model Operating in Industrial Applications," Energies, MDPI, vol. 16(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1903-:d:1068505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yibo Deng & Chushan Li & Yan Deng & Ting Chen & Shaoyu Feng & Yujie Chu & Chengmin Li, 2023. "Energy Efficiency Optimization of Collaborative Power Supply System with Supercapacitor Storages," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Mahdy, Ahmed & Hasanien, Hany M. & Turky, Rania A. & Abdel Aleem, Shady H.E., 2023. "Modeling and optimal operation of hybrid wave energy and PV system feeding supercharging stations based on golden jackal optimal control strategy," Energy, Elsevier, vol. 263(PD).
    3. Pedrayes, Joaquín F. & Melero, Manuel G. & Norniella, Joaquín G. & Cano, José M. & Cabanas, Manés F. & Orcajo, Gonzalo A. & Rojas, Carlos H., 2019. "A novel analytical solution for the calculation of temperature in supercapacitors operating at constant power," Energy, Elsevier, vol. 188(C).
    4. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ģirts Staņa & Jānis Voitkāns & Kaspars Kroičs, 2023. "Supercapacitor Constant-Current and Constant-Power Charging and Discharging Comparison under Equal Boundary Conditions for DC Microgrid Application," Energies, MDPI, vol. 16(10), pages 1-27, May.
    2. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
    3. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    4. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1903-:d:1068505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.