IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1083-d1040416.html
   My bibliography  Save this article

Lithium-Ion Battery State-of-Charge Estimation from the Voltage Discharge Profile Using Gradient Vector and Support Vector Machine

Author

Listed:
  • Erwin Sutanto

    (Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Kampus C Unair Mulyorejo, Surabaya 60115, Indonesia)

  • Putu Eka Astawa

    (East Java Distribution, Perusahaan Listrik Negara, Surabaya 60271, Indonesia)

  • Fahmi Fahmi

    (Department of Electrical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia)

  • Muhammad Imran Hamid

    (Department of Electrical Engineering, Universitas Andalas, Padang 25163, Indonesia)

  • Muhammad Yazid

    (Biomedical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Wervyan Shalannanda

    (School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia)

  • Muhammad Aziz

    (Institute of Industrial Science, The University of Tokyo, Tokyo 153-8550, Japan)

Abstract

The battery monitoring system (BMoS) is crucial to monitor the condition of the battery in supplying and absorbing the energy when operating and simultaneously determine the optimal limits for achieving long battery life. All of this can be done by measuring the battery parameters and increasing the state of charge (SoC) and the state of health (SoH) of the battery. The battery dataset from NASA is used for evaluation. In this work, the gradient vector is employed to obtain the trend of the energy supply pattern from the battery. In addition, a support vector machine (SVM) is adopted for an accurate battery accuracy index. This is in line with the use of polynomial regression; hence, points V1 and V2 are obtained as the boundaries of the normal-usage phase. Furthermore, testing of the time length distribution is also carried out on the length of time the battery was successfully extracted from the classification. All these stages can be used to calculate the rate of battery degradation during use so that this strategy can be applied in real situations by continuously comparing values. In this case, using the voltage gradient, SVM method, and the suggested polynomial regression, MAPE (%), MAE, and RMSE can be obtained against the battery value graph with values of 0.3%, 0.0106, and 0.0136, respectively. With this error value, the dynamics of the SoC value of the battery can be obtained, and the SoH problem can be resolved with a shorter usage time by avoiding the voltage-drop phase.

Suggested Citation

  • Erwin Sutanto & Putu Eka Astawa & Fahmi Fahmi & Muhammad Imran Hamid & Muhammad Yazid & Wervyan Shalannanda & Muhammad Aziz, 2023. "Lithium-Ion Battery State-of-Charge Estimation from the Voltage Discharge Profile Using Gradient Vector and Support Vector Machine," Energies, MDPI, vol. 16(3), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1083-:d:1040416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Bustos & Stephen Andrew Gadsden & Pawel Malysz & Mohammad Al-Shabi & Shohel Mahmud, 2022. "Health Monitoring of Lithium-Ion Batteries Using Dual Filters," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Zhengyi Bao & Jiahao Jiang & Chunxiang Zhu & Mingyu Gao, 2022. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 15(12), pages 1-16, June.
    3. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    2. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    3. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    4. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    6. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    7. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    8. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    9. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    10. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    11. Haipeng Pan & Chengte Chen & Minming Gu, 2022. "A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations," Energies, MDPI, vol. 15(7), pages 1-15, March.
    12. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    13. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    14. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    15. Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
    16. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    17. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    18. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    19. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    20. Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1083-:d:1040416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.