IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1017-d1038301.html
   My bibliography  Save this article

Small-Signal Stability and Resonance Perspectives in Microgrid: A Review

Author

Listed:
  • Awan Uji Krismanto

    (Electrical Engineering Department, Institut Teknologi Nasional Malang, Kota Malang 65152, Indonesia)

  • Nadarajah Mithulananthan

    (School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia)

  • Rakibuzzaman Shah

    (Centre for New Energy Transition Research (CfNETR), Federation University Australia, Mt. Helen, VIC 3353, Australia)

  • Herlambang Setiadi

    (Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Kota Surabaya 60115, Indonesia)

  • Md. Rabiul Islam

    (School of Electrical, Computer, and Telecommunications, University of Wollongong, Wollongong, NSW 2522, Australia)

Abstract

The microgrid (MG) system is a controlled and supervised power system consisting of renewable energy (RE)-based distributed generation (DG) units, loads, and energy storage. The MG can be operated autonomously or while connected to the grid. Higher intermittencies and uncertainties can be observed in MGs compared to the conventional power system, which is the possible source of small-signal stability in MG systems. It can be seen as disturbances around the stable operating point, which potentially lead to the small-signal instability problem within MGs. Small-signal instability issues also emerge due to the lack of damping torque in the MG. The integration of power electronic devices and complex control algorithms within MGs introduces novel challenges in terms of small-signal stability and possible resonances. The occurrence of interaction in a low- or no-inertia system might worsen the stability margin, leading to undamped oscillatory instability. The interaction within the MG is characterized by various frequency ranges, from low-frequency subsynchronous oscillation to high-frequency ranges around the harmonic frequencies. This study presents an overview of the dynamic model, possible sources of small-signal instability problems, and resonance phenomena in MGs. The developed models of MG, including structure, converter-based power generation, and load and control algorithms, are briefly summarized to provide the context of MG system dynamics. A comprehensive critical review of the previous research, including small-signal stability and resonance phenomenon for MGs, is also provided. Finally, key future research areas are recommended.

Suggested Citation

  • Awan Uji Krismanto & Nadarajah Mithulananthan & Rakibuzzaman Shah & Herlambang Setiadi & Md. Rabiul Islam, 2023. "Small-Signal Stability and Resonance Perspectives in Microgrid: A Review," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1017-:d:1038301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrao, Iván & Figueres, Emilio & Garcerá, Gabriel & González-Medina, Raúl, 2015. "Microgrid architectures for low voltage distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 415-424.
    2. San, Guocheng & Zhang, Wenlin & Guo, Xiaoqiang & Hua, Changchun & Xin, Huanhai & Blaabjerg, Frede, 2020. "Large-disturbance stability for power-converter-dominated microgrid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    2. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    3. Morteza Daviran Keshavarzi & Mohd Hasan Ali, 2021. "Dynamic Performance Enhancement of Power Grids by Operating Solar Photovoltaic (PV) System as Supercapacitor Energy Storage," Energies, MDPI, vol. 14(14), pages 1-24, July.
    4. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    5. Siewierski, Tomasz & Szypowski, Michał & Wędzik, Andrzej, 2018. "A review of economic aspects of voltage control in LV smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 37-45.
    6. Jalali, Mehdi & Zare, Kazem & Seyedi, Heresh, 2017. "Strategic decision-making of distribution network operator with multi-microgrids considering demand response program," Energy, Elsevier, vol. 141(C), pages 1059-1071.
    7. Hoffmann, Martha M. & Ansari, Dawud, 2019. "Simulating the potential of swarm grids for pre-electrified communities – A case study from Yemen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 289-302.
    8. Tiara Freitas & João Caliman & Paulo Menegáz & Walbermark dos Santos & Domingos Simonetti, 2021. "A DCM Single-Controlled Three-Phase SEPIC-Type Rectifier," Energies, MDPI, vol. 14(2), pages 1-16, January.
    9. Jose R Sicchar & Carlos T. Da Costa & Jose R. Silva & Raimundo C. Oliveira & Werbeston D. Oliveira, 2018. "A Load-Balance System Design of Microgrid Cluster Based on Hierarchical Petri Nets," Energies, MDPI, vol. 11(12), pages 1-30, November.
    10. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    11. Fabio Bignucolo & Manuele Bertoluzzo, 2020. "Application of Solid-State Transformers in a Novel Architecture of Hybrid AC/DC House Power Systems," Energies, MDPI, vol. 13(13), pages 1-18, July.
    12. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    13. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    14. Hui-Juan Zhang & Yi-Bo Feng & Kuo-Ping Lin, 2018. "Application of Multi-Species Differential Evolution Algorithm in Sustainable Microgrid Model," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    15. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.
    16. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    17. Prudhvi Kumar Gorijeevaram Reddy & Sattianadan Dasarathan & Vijayakumar Krishnasamy, 2021. "Investigation of Adaptive Droop Control Applied to Low-Voltage DC Microgrid," Energies, MDPI, vol. 14(17), pages 1-20, August.
    18. Anna Ostrowska & Łukasz Michalec & Marek Skarupski & Michał Jasiński & Tomasz Sikorski & Paweł Kostyła & Robert Lis & Grzegorz Mudrak & Tomasz Rodziewicz, 2022. "Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    19. Almada, J.B. & Leão, R.P.S. & Sampaio, R.F. & Barroso, G.C., 2016. "A centralized and heuristic approach for energy management of an AC microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1396-1404.
    20. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1017-:d:1038301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.