IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p7946-d1295715.html
   My bibliography  Save this article

Effects of Methanol Addition on the Combustion Process of the Methanol/Diesel Dual-Fuel Based on an Optical Engine

Author

Listed:
  • Jinping Liu

    (School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455000, China)

  • Guangzhao Guo

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Mingrui Wei

    (School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

The combustion process of traditional diesel engines is mainly determined by the injection timing of diesel. There is a trade-off relationship between the soot and NOx (nitrogen oxides) during this combustion process, making it difficult to reduce these two emissions simultaneously. The use of methanol can not only solve the above problem, but also replace some fossil fuels. However, the effects of methanol injection into the intake duct on the flame propagation in diesel/methanol dual-fuel engines is not yet clear, and there is relatively little research on it. The effects of methanol addition on the combustion process of diesel/methanol dual fuel (DMDF) were achieved based on a modified optical engine in this paper. One injector is installed on the intake inlet to inject methanol, and the other injector is installed in the cylinder to inject diesel in two stages before the top dead center of compression. There are three tests conducted separately in this paper. Firstly, the effects of the methanol ratio (40%, 50%, 60%, and 70%) on the combustion process are investigated, with the total heat remaining unchanged. Secondly, the effects of the pre-injection mass of diesel (20%, 30%, 40%, and 50%) on the combustion process are investigated, which keeps the total diesel mass unchanged. Finally, the effects of the total mass of diesel on the combustion process are investigated while maintaining the mass of methanol unchanged. The dual-fuel combustion process is recorded by a high-speed camera. A combustion analyzer and other equipment were used to analyze the combustion. The results showed that CA10 is delayed, the pressure and the heat release rate (HRR) are reduced, and the number of pixels of the KL factor (KL) decreases significantly with the increasing methanol ratio. CA10 and CA50 are advanced, the pressure and HRR decrease, and the KL increases when the mass of pre-injected diesel increases. CA10 and CA50 are advanced, respectively, and CA90 is postponed due to the increase in diesel mass. The pressure and HRR increase, and the KL increases when the total mass of diesel increases.

Suggested Citation

  • Jinping Liu & Guangzhao Guo & Mingrui Wei, 2023. "Effects of Methanol Addition on the Combustion Process of the Methanol/Diesel Dual-Fuel Based on an Optical Engine," Energies, MDPI, vol. 16(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7946-:d:1295715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/7946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/7946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hani Al-Rawashdeh & Ahmad O. Hasan & Mohamed R. Gomaa & Ahmad Abu-jrai & Mohammad Shalby, 2022. "Determination of Carbonyls Compound, Ketones and Aldehydes Emissions from CI Diesel Engines Fueled with Pure Diesel/Diesel Methanol Blends," Energies, MDPI, vol. 15(21), pages 1-16, October.
    2. Cheng, Qiang & Ahmad, Zeeshan & Kaario, Ossi & Martti, Larmi, 2019. "Cycle-to-cycle variations of dual-fuel combustion in an optically accessible engine," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elias Amancio Siqueira-Filho & Maira Farias Andrade Lira & Attilio Converti & Hugo Valadares Siqueira & Carmelo J. A. Bastos-Filho, 2023. "Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models," Energies, MDPI, vol. 16(7), pages 1-27, March.
    2. Giacomo Silvagni & Abhinandhan Narayanan & Vittorio Ravaglioli & Kalyan Kumar Srinivasan & Sundar Rajan Krishnan & Nik Collins & Paulius Puzinauskas & Fabrizio Ponti, 2023. "Experimental Characterization of Hydrocarbons and Nitrogen Oxides Production in a Heavy-Duty Diesel–Natural Gas Reactivity-Controlled Compression Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-19, July.
    3. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:7946-:d:1295715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.