IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7585-d1280623.html
   My bibliography  Save this article

Study on the Evolution Law of Wellbore Stability Interface during Drilling of Offshore Gas Hydrate Reservoirs

Author

Listed:
  • Xuefeng Li

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Baojiang Sun

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Baojin Ma

    (CNPC Offshore Engineering Company Limited, Beijing 100028, China)

  • Hao Li

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China)

  • Huaqing Liu

    (CNPC Offshore Engineering Company Limited, Beijing 100028, China)

  • Dejun Cai

    (CNPC Offshore Engineering Company Limited, Beijing 100028, China)

  • Xiansi Wang

    (CNPC Offshore Engineering Company Limited, Beijing 100028, China)

  • Xiangpeng Li

    (CNPC Offshore Engineering Company Limited, Beijing 100028, China)

Abstract

The study of wellbore stability in offshore gas hydrate reservoirs is an important basis for the large-scale exploitation of natural gas hydrate resources. The wellbore stability analysis model in this study considers the evolution of the reservoir mechanical strength, wellbore temperature, and pressure parameters along the depth and uses plastic strain as a new criterion for wellbore instability. The wellbore stability model couples the hydrate phase transition near the wellbore area under the effect of the wellbore temperature and pressure field and the ‘heat–fluid–solid’ multifield evolution characteristics, and then simulates the stability evolution law of the wellbore area during the drilling process in the shallow seabed. The research results show that, owing to the low temperature of the seawater section and shallow formation, the temperature of the drilling fluid in the shallow layer of the wellbore can be maintained below the formation temperature, which effectively inhibits the decomposition of hydrates in the wellbore area. When the wellbore temperature increases or pressure decreases, the hydrate decomposition rate near the wellbore accelerates, and the unstable area of the wellbore will further expand. The research results can provide a reference for the design of drilling parameters for hydrate reservoirs.

Suggested Citation

  • Xuefeng Li & Baojiang Sun & Baojin Ma & Hao Li & Huaqing Liu & Dejun Cai & Xiansi Wang & Xiangpeng Li, 2023. "Study on the Evolution Law of Wellbore Stability Interface during Drilling of Offshore Gas Hydrate Reservoirs," Energies, MDPI, vol. 16(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7585-:d:1280623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oleg Bazaluk & Kateryna Sai & Vasyl Lozynskyi & Mykhailo Petlovanyi & Pavlo Saik, 2021. "Research into Dissociation Zones of Gas Hydrate Deposits with a Heterogeneous Structure in the Black Sea," Energies, MDPI, vol. 14(5), pages 1-24, March.
    2. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    3. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    2. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    3. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    4. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    5. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    6. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    7. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    8. Yi Wang & Lei Zhan & Jing-Chun Feng & Xiao-Sen Li, 2019. "Influence of the Particle Size of Sandy Sediments on Heat and Mass Transfer Characteristics during Methane Hydrate Dissociation by Thermal Stimulation," Energies, MDPI, vol. 12(22), pages 1-15, November.
    9. Beatrice Castellani, 2023. "Potential Pathway for Reliable Long-Term CO 2 Storage as Clathrate Hydrates in Marine Environments," Energies, MDPI, vol. 16(6), pages 1-13, March.
    10. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    11. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    12. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    13. Xiao-Hui Wang & Qiang Xu & Ya-Nan He & Yun-Fei Wang & Yi-Fei Sun & Chang-Yu Sun & Guang-Jin Chen, 2019. "The Acoustic Properties of Sandy and Clayey Hydrate-Bearing Sediments," Energies, MDPI, vol. 12(10), pages 1-11, May.
    14. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    15. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    16. Hao, Yongmao & Liang, Jikai & Zhan, Shiyuan & Fan, Mingwu & Wang, Jiandong & Li, Shuxia & Yang, Fan & Yang, Shiwei & Wang, Chuanming, 2022. "Dynamic analysis on edge of sand detachment of natural gas hydrate reservoir," Energy, Elsevier, vol. 238(PB).
    17. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    18. Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
    19. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    20. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7585-:d:1280623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.