IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7303-d1269106.html
   My bibliography  Save this article

Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties

Author

Listed:
  • Mingchen Ding

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China
    Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Ping Liu

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China)

  • Yefei Wang

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Zhenyu Zhang

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Jiangyang Dong

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Yingying Duan

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

Abstract

Emulsification is increasingly emphasized for heavy oil recovery through chemical flooding. However, whether systems with fine-emulsification (FE) properties significantly outperform conventional ultra-low interfacial tension (IFT) systems, especially under varying water-oil viscosity ratios, remains unclear. In this research, two FE systems and one conventional ultra-low IFT system are compared in terms of their IFTs, emulsification properties, foaming behaviors, and heavy oil recovery (in the form of combination flooding and foam flooding). The results show that FE systems 1# and 2# can generate more stable emulsions of heavy oil than the traditional ultra-low IFT variant 3#. During the first combination flooding, FE systems recover 24.5% and 27.9% of the oil after water, obviously surpassing 21.0% of the ultra-low IFT system 3#; but as this ratio increases to 0.45, those factors become very similar to ones of 33.2%, 34.5% and 32.9%, with the former no longer outperforming the latter. In the second trials of foam flooding, at a lower water-oil viscosity ratio of 0.05, FE foam 1# becomes less effective than the ultra-low IFT 3#, with oil recovery factors of 27.2% and 31.6%, respectively; but foam 2# (combining medium emulsification and ultra-low IFT) remains optimal, with the highest recovery factor of 40.0%. Again, as this ratio becomes 0.45, the advantages of FE systems over the ultra-low IFT system are almost negligible, generating similar oil recoveries of 39.2%, 41.0% and 39.4%.

Suggested Citation

  • Mingchen Ding & Ping Liu & Yefei Wang & Zhenyu Zhang & Jiangyang Dong & Yingying Duan, 2023. "Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties," Energies, MDPI, vol. 16(21), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7303-:d:1269106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    2. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    3. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    4. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    5. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    6. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    8. Yu, Peng, 2022. "Posterior probability-based hydraulic unit division and prediction: A case study," Energy, Elsevier, vol. 246(C).
    9. Huang, Lijuan & Wang, Yu & Li, Zongfa & Zhang, Liang & Yin, Yuchuan & Chen, Chao & Ren, Shaoran, 2021. "Experimental study on piloted ignition temperature and auto ignition temperature of heavy oils at high pressure," Energy, Elsevier, vol. 229(C).
    10. Yong Huang & Wulin Xiao & Sen Chen & Boliang Li & Liping Du & Binfei Li, 2022. "A Study on the Adaptability of Nonhydrocarbon Gas-Assisted Steam Flooding to the Development of Heavy Oil Reservoirs," Energies, MDPI, vol. 15(13), pages 1-15, June.
    11. Keyang Cheng & Yongjian Liu & Zhilin Qi & Jie Tian & Taotao Luo & Shaobin Hu & Jun Li, 2022. "Laboratory Evaluation of the Plugging Performance of an Inorganic Profile Control Agent for Thermal Oil Recovery," Energies, MDPI, vol. 15(15), pages 1-10, July.
    12. Peng Li & Yanyu Zhang & Xiaofei Sun & Huijuan Chen & Yang Liu, 2020. "A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations," Energies, MDPI, vol. 13(15), pages 1-38, August.
    13. Tingen Fan & Wenjiang Xu & Wei Zheng & Weidong Jiang & Xiuchao Jiang & Taichao Wang & Xiaohu Dong, 2022. "A Production Performance Model of the Cyclic Steam Stimulation Process in Multilayer Heavy Oil Reservoirs," Energies, MDPI, vol. 15(5), pages 1-21, February.
    14. Zehao Xie & Qihong Feng & Jiyuan Zhang & Xiaoxuan Shao & Xianmin Zhang & Zenglin Wang, 2021. "Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir," Energies, MDPI, vol. 14(23), pages 1-22, December.
    15. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    16. Kirill A. Bashmur & Oleg A. Kolenchukov & Vladimir V. Bukhtoyarov & Vadim S. Tynchenko & Sergei O. Kurashkin & Elena V. Tsygankova & Vladislav V. Kukartsev & Roman B. Sergienko, 2022. "Biofuel Technologies and Petroleum Industry: Synergy of Sustainable Development for the Eastern Siberian Arctic," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    17. Xiaoxu Tang & Zhao Hua & Jian Zhang & Qiang Fu & Jie Tian, 2022. "A Study on Generation and Feasibility of Supercritical Multi-Thermal Fluid," Energies, MDPI, vol. 15(21), pages 1-26, October.
    18. Wei Zhang & Deli Gao & Yigang Liu & Jianhua Bai & Cheng Wang, 2023. "Study of the Failure Mechanism of an Integrated Injection-Production String in Thermal Recovery Wells for Heavy Oil," Energies, MDPI, vol. 16(7), pages 1-18, April.
    19. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    20. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7303-:d:1269106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.