IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6933-d1252814.html
   My bibliography  Save this article

Enhanced Economic Load Dispatch by Teaching–Learning-Based Optimization (TLBO) on Thermal Units: A Comparative Study with Different Plug-in Electric Vehicle (PEV) Charging Strategies

Author

Listed:
  • Tejaswita Khobaragade

    (Department of Electrical and Electronics Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India)

  • K. T. Chaturvedi

    (Department of Electrical and Electronics Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India)

Abstract

This research paper presents an enhanced economic load dispatch (ELD) approach using the Teaching–Learning-Based Optimization (TLBO) algorithm for 10 thermal units, examining the impact of Plug-in Electric Vehicles (PEVs) in different charging scenarios. The TLBO algorithm was utilized to optimize the ELD problem, considering the complexities associated with thermal units. The integration of PEVs in the load dispatch optimization was investigated, and different charging profiles and probability distributions were defined for PEVs in various scenarios, including overall charging profile, off-peak charging, peak charging, and stochastic charging. These tables allow for the modeling and analysis of PEV charging behavior and power requirements within the power system. By incorporating PEVs, additional controllable resources were introduced, enabling more effective load management and grid stability. The comparative analysis showcases the advantages of the TLBO-based ELD model with PEVs, demonstrating the potential of coordinated dispatch strategies leveraging PEV storage and controllability. This paper emphasizes the importance of integrating PEVs into the load dispatch optimization process, utilizing the TLBO algorithm, to achieve economic and reliable power system operation while considering different PEV charging scenarios.

Suggested Citation

  • Tejaswita Khobaragade & K. T. Chaturvedi, 2023. "Enhanced Economic Load Dispatch by Teaching–Learning-Based Optimization (TLBO) on Thermal Units: A Comparative Study with Different Plug-in Electric Vehicle (PEV) Charging Strategies," Energies, MDPI, vol. 16(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6933-:d:1252814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenqiang Yang & Tingli Cheng & Yuanjun Guo & Zhile Yang & Wei Feng, 2020. "A Modified Social Spider Optimization for Economic Dispatch with Valve-Point Effects," Complexity, Hindawi, vol. 2020, pages 1-13, October.
    2. Ma, Haiping & Yang, Zhile & You, Pengcheng & Fei, Minrui, 2017. "Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging," Energy, Elsevier, vol. 135(C), pages 101-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    2. Panpan Mei & Lianghong Wu & Hongqiang Zhang & Zhenzu Liu, 2019. "A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration," Energies, MDPI, vol. 12(20), pages 1-21, October.
    3. Qiao, Baihao & Liu, Jing, 2020. "Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm," Renewable Energy, Elsevier, vol. 154(C), pages 316-336.
    4. Eliton Smith dos Santos & Marcus Vinícius Alves Nunes & Manoel Henrique Reis Nascimento & Jandecy Cabral Leite, 2022. "Rational Application of Electric Power Production Optimization through Metaheuristics Algorithm," Energies, MDPI, vol. 15(9), pages 1-31, April.
    5. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
    6. Tingli Cheng & Minyou Chen & Yingxiang Wang & Bo Li & Muhammad Arshad Shehzad Hassan & Tao Chen & Ruilin Xu, 2018. "Adaptive Robust Method for Dynamic Economic Emission Dispatch Incorporating Renewable Energy and Energy Storage," Complexity, Hindawi, vol. 2018, pages 1-13, June.
    7. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    8. Tan, Bifei & Chen, Haoyong, 2020. "Multi-objective energy management of multiple microgrids under random electric vehicle charging," Energy, Elsevier, vol. 208(C).
    9. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    10. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
    11. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    12. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    13. Wu, Juai & Zhang, Mengying & Xu, Tianheng & Gu, Duan & Xie, Dongliang & Zhang, Tengfei & Hu, Honglin & Zhou, Ting, 2023. "A review of key technologies in relation to large-scale clusters of electric vehicles supporting a new power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Karar Mahmoud & Mohamed Abdel-Nasser & Eman Mustafa & Ziad M. Ali, 2020. "Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    15. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Srikant Misra & P. K. Panigrahi & Bishwajit Dey, 2023. "An efficient way to schedule dispersed generators for a microgrid system's economical operation under various power market conditions and grid involvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1799-1809, October.
    17. Jabari, Farkhondeh & Jabari, Hamid & Mohammadi-ivatloo, Behnam & Ghafouri, Jafar, 2019. "Optimal short-term coordination of water-heat-power nexus incorporating plug-in electric vehicles and real-time demand response programs," Energy, Elsevier, vol. 174(C), pages 708-723.
    18. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    19. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
    20. Amiri, M. & Khanmohammadi, S. & Badamchizadeh, M.A., 2018. "Floating search space: A new idea for efficient solving the Economic and emission dispatch problem," Energy, Elsevier, vol. 158(C), pages 564-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6933-:d:1252814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.